
Barrelfish Project
ETH Zurich

Barrelfish Practical Guide

Barrelfish Technical Note 018

Team Barrelfish

29.07.2021

Systems Group
Department of Computer Science

ETH Zurich
CAB F.79, Universitätstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/

http://www.barrelfish.org/

Revision History

Revision Date Author(s) Description

1.0 06.12.2013 The Barrelfish
Team

Initial version

2.0 29.07.2021 LH Updated to recent version

Barrelfish Practical guide - 2 Barrelfish TN-018

Contents

1 Introduction 4

2 Writing Hello World application 5
2.1 Writing A Sample Barrelfish Application . 5

2.1.1 A Simple Hello World Program . 5
2.2 A Simple Hello World Program Using IDC . 6

2.2.1 Interface . 6
2.2.2 Application . 7
2.2.3 Server side . 7
2.2.4 Client side . 9
2.2.5 Building and running the application . 11

Barrelfish TN-018 Barrelfish Practical guide - 3

Chapter 1

Introduction

This note describes how to build and boot Barrelfish on 64-bit PC hardware, which is the default config-
uration for Barrelfish. It then goes on to work through a simple “hello, world”-style application which
illustrates client-server programming in C on Barrelfish, and the use of the message-passing subsystem.

Information on how to compile Barrelfish for other platforms, in particular ARM, are found in other
documents. However, the application programming section in this guide is still relevant.

Please refer to the README in the source code root for a list of supported hardware, build dependencies
and how to compile the initial Barrelfish version.

Barrelfish Practical guide - 4 Barrelfish TN-018

Chapter 2

Writing Hello World application

2.1 Writing A Sample Barrelfish Application

Here we show how to write a simple program on Barrelfish. Refer to usr/examples/... for the hello
world we present here as well as further examples.

2.1.1 A Simple Hello World Program

The source for user domains are stored under

/usr

and its subdirectories.

A simple hello world domain consists of a source file, and a Hakefile. e.g.,

usr/examples/xmpl-hello/

hello.c

Hakefile

For a simple hello world app, the source is trivial: a simple printf in main will suffice (note that for
output printf either uses a debug syscall to print to the serial output, or a proper serial server if one is
available).

#include <stdio.h>

int main(void) {

printf("Hello World\n");

return 0;

}

The Hakefile will describe how our example application is being built. For the details on how to write
Hakefiles, refer to the Barrelfish Technical Note TN-003. For now, it suffices to understand that the C
files for our application are hello.c and the built binary will be stored in examples/xmpl-hello in the
build tree.

[build application { target = "examples/xmpl-hello",

cFiles = ["hello.c"]

}

]

To inform the build system of our newly created Hakefile, we must call hake.sh in the build directory
(for example using mkdir build && ../hake/hake.sh -s .. -a x86 64). The build system will
discover changed Hakefiles automatically, but it wont notice new ones. If we have added new Hakefiles

Barrelfish TN-018 Barrelfish Practical guide - 5

Figure 2.1: Hello world application overview

we have to re-run hake.sh (or use the shortcut make rehake). The hake run will create Config.hs and a
Makefile.

At this point, we can explicitly build our sample application by running make x86 64/sbin/examples/xmpl-hello.
The next step is to add a dependency from a simulator target to our example application, such that it
gets built and bundled automatically. The platforms are described itself in a Hakefile, which is located
in platforms/Hakefile. To add a dependency, we can for example add our target to modules x86 64

by adding the line "examples/xmpl-hello" to the list of modules. Now our application is built au-
tomatically when invoking any X86 platform, but it is not yet bundled into the image and it wont be
available at runtime. For the QEMU simulator target, the build system uses the hake/menu.lst.x86 64

to describe which domains are included. Thus we add module /x86 64/sbin/examples/xmpl-hello

to the menu.lst. Then we run make qemu x86 64 and once it has booted into our shell, we can use the
command ./x86 64/sbin/examples/xmpl-hello to run our application and hopefully be greeted with
a ”hello world”.

2.2 A Simple Hello World Program Using IDC

In this section, we talk how we can write an application that uses Barrelfish IDC mechanism to commu-
nicate with other applications. For purpose of this section, we will develop simple Hello World client
and server application. The client running on core-0 will send an IDC message to a server running on
core-1. This message will contain a string with contents "Hello World".

Adding IDC (inter-dispatcher communication) is a bit more complicated. It requires defining an inter-
face in Flounder IDL, updating the interfaces Hakefile, updating the domain’s (myapp) Hakefile, and
then adding initialization code as well as appropriate callbacks to the source file.

2.2.1 Interface

In this subsection, we will create a new interface for our use. We do this by creating a new interface file
called hello.if in the if

directory. Following is simple interface that will suffice for our requirements of sending single string as
a message.

interface hello "Hello World interface" {

message hello_msg(string s);

};

You can find out more about how to write such interfaces by referring IDC-Technote.

You also need to modify the if/Hakefile to add this newly created interface into the compilation
process.

[flounderGenDefs (options arch) f

| f <- ["ahci_mgmt",

Barrelfish Practical guide - 6 Barrelfish TN-018

http://www.barrelfish.org/TN-011-IDC.pdf

...

...

"hello"],

arch <- allArchitectures

] ++

Adding the name of your interface here will make sure that the communication stubs will be automati-
cally generated for by the compilation process. These can be found in following location in your build
directory:

BUILD/ARCH/include/if/hello_defs.h

BUILD/ARCH/include/if/hello_lmp_defs.h

BUILD/ARCH/include/if/hello_ump_defs.h

BUILD/ARCH/include/if/hello_multihop_defs.h

There will be one for each type of communication mechanism supported by the Barrelfish. You don’t
need to worry about these files as build mechanism will take care of these files. Only things developers
need to do is write the interface file and include appropriate headers in the application code (discussed
in following section)

2.2.2 Application

In this section, we discuss how would we write the application code, and how to compile it. For sake
of simplicity, we will write both server and client code in same application. Following is the code for
the main function, which runs the client code or server code based on the command line argument.

int main(int argc, char *argv[]) {

errval_t err;

if ((argc >= 2) && (strcmp(argv[1], "client") == 0)) {

start_client();

} else if ((argc >= 2) && (strcmp(argv[1], "server") == 0)) {

start_server();

} else {

return EXIT_FAILURE;

}

/* The dispatch loop */

struct waitset *ws = get_default_waitset();

while (1) {

err = event_dispatch(ws); /* get and handle next event */

if (err_is_fail(err)) {

DEBUG_ERR(err, "in event_dispatch");

break;

}

}

return EXIT_FAILURE;

}

The important part of the above is in the dispatch loop where application will wait for events on the
default wait-set and handle those events in infinite while loop.

2.2.3 Server side

In this section, we will develop the server code in steps of ”exporting service”, ”registering the service”
and ”handling actual requests”.

Barrelfish TN-018 Barrelfish Practical guide - 7

Exporting service

As a first step, server needs to export the service it wants to provide by calling export function on the
service interface. In this case, server will call hello export as we are providing Hello World service.

static void start_server(void)

{

errval_t err;

err = hello_export(NULL /* state for callbacks */,

export_cb, /* Callback for export */

connect_cb, /* Callback for client connects */

get_default_waitset(), /* waitset where events will be sent */

IDC_EXPORT_FLAGS_DEFAULT);

if (err_is_fail(err)) {

USER_PANIC_ERR(err, "export failed");

}

}

This call also registers two callback handles. Once the service is successfully exported, then the export
callback provided. When any client connects with the service then the connect callback will be called.
We will see the use of these callbacks in next few steps.

Registering service

Server also need to register the service so that other applications can find it. Following code registers
the "hello service" on the callback from successful completion of export:

const static char *service_name = "hello_service";

static void export_cb(void *st, errval_t err, iref_t iref)

{

if (err_is_fail(err)) {

USER_PANIC_ERR(err, "export failed");

}

err = nameservice_register(service_name, iref);

if (err_is_fail(err)) {

USER_PANIC_ERR(err, "nameservice_register failed");

}

}

The nameservice register is a blocking call which will connect to the global nameserver and publish
the service name.

Connect and handling messages

This section describes how exactly the connection is established and requests are handled.

static void rx_hello_msg(struct hello_binding *b, char *str)

{

printf("server: received hello_msg:\n\t%s\n", str);

free(str);

}

static struct hello_rx_vtbl rx_vtbl = {

.hello_msg = rx_hello_msg,

};

Barrelfish Practical guide - 8 Barrelfish TN-018

static errval_t connect_cb(void *st, struct hello_binding *b)

{

b->rx_vtbl = rx_vtbl;

return SYS_ERR_OK;

}

The above code defines a function rx hello msg which will be responsible to actually handle the re-
quests. In our case, we are just printing out the string we received as part of the message.

We need to create a list of function pointers where one function pointer is assigned for every possible
incoming message. So we are creating an instance rx vtbl of type hello rx vtbl.

On arrival of new connection, we provide this list of function pointers to register which functions to
call for handling particular type of message.

2.2.4 Client side

Client needs to find the service and connect to it. Once the connection is successfully established then
it can send the actual requests. In this section, we show how it can be done.

Find and Bind

Following code finds the desired service with given name and binds with the service.

static void start_client(void)

{

errval_t err;

iref_t iref;

err = nameservice_blocking_lookup(service_name,

&iref);

if (err_is_fail(err)) {

USER_PANIC_ERR(err,

"nameservice_blocking_lookup failed");

}

err = hello_bind(iref, bind_cb, /* Callback function */

NULL /* State for the callback */,

get_default_waitset(),

IDC_BIND_FLAGS_DEFAULT);

if (err_is_fail(err)) {

USER_PANIC_ERR(err, "bind failed");

}

}

As the name suggests nameservice blocking lookup is a blocking call which will connect with the
nameserver and query for the given service name. The iref handle returned by this call can be used
for binding with the service.

The hello bind is part of the code generated from the interface file and will try and connect with the
server on appropriate channel.

Following code is callback function which will be called when client successfully connects with the
server. This code also creates a client state which stores pointer to the communication channel binding.
This code then calls a function run client with the client state.

struct client_state {

struct hello_binding *binding;

int count;

};

Barrelfish TN-018 Barrelfish Practical guide - 9

static void bind_cb(void *st, errval_t err, struct hello_binding *b)

{

struct client_state *myst = malloc(sizeof(struct client_state));

assert(myst != NULL);

myst->binding = b;

myst->count = 0;

run_client(myst); /* calling run_client for first time */

}

Sending messages

Most of the actual work of sending message is done from the run client function which is described
bellow:

static void run_client(void *arg)

{

errval_t err;

struct client_state *myst = arg;

struct hello_binding *b = myst->binding;

/* Creating a continuation which will call run_client */

struct event_closure txcont = MKCONT(run_client, myst);

err = b->tx_vtbl.hello_msg(b, txcont, "Hello World");

if (err_is_fail(err)) {

DEBUG_ERR(err, "error sending message %d\n", myst->count);

}

}

This function first creates a continuation which calls itself and will be used as a callback function. The
next step is to actually send the message by calling an appropriate function on the send side of inter-
face binding (tx vtbl.hello msg) with actual message and above created continuation. This call will
register a message to be sent and a callback that will be triggered when message is successfully.

As you can notice, callback function is calling run client again, leading an infinite loop of sending
messages.

Include files

Following is a typical set of include files that you will need to add in your code.

#include <stdio.h>

#include <barrelfish/barrelfish.h>

#include <barrelfish/nameservice_client.h>

#include <if/hello_defs.h>

The barrelfish.h file contains declaration of functionalities related to Barrelfish OS (eg: system calls,
capability system related functionalities, etc.) nameservice client.h file provides declarations for
functions related to registering and looking up services. The hello defs.h file includes the declara-
tions for automatically generated code to support if/hello.if interface.

Barrelfish Practical guide - 10 Barrelfish TN-018

2.2.5 Building and running the application

In this section, we talk about how build your application. For this, you will need to create a Hakefile

in the code directory which should look something like bellow:

[build application { target = "hello-cs",

cFiles = ["hello.c"],

flounderBindings = ["hello"]

}

]

This Hakefile specifies that you want to build an application with name hellocs from the hello.c file,
and also it marks the dependency on the communication interface hello.

The next step is to modify the barrelfish/hake/symbolic targets.mk file to include your newly cre-
ated application into the build process. Here you can choose an architecture for which your application
should be compiled, or you can also add your application in MODULES COMMON list so that your applica-
tion will be compiled for all architectures.

MODULES_COMMON= \

sbin/init_null \

...

...

sbin/xcorecapbench \

sbin/hello-cs \

After this, rebuild the Barrelfish to include newly added application. On successful compilation the
binary will be created in sbin directory of desired architecture.

Next step is to edit one of the barrelfish/hake/menu.lst.* file based on which architecture you are
targeting. Bellow is the minimal menu.lst.x86 64 file to be able to run this newly created application.

title Barrelfish

root (nd)

kernel /x86_64/sbin/elver loglevel=3

module /x86_64/sbin/cpu loglevel=3

module /x86_64/sbin/init

Domains spawned by init

module /x86_64/sbin/mem_serv

module /x86_64/sbin/monitor

Special boot time domains spawned by monitor

module /x86_64/sbin/ramfsd boot

module /x86_64/sbin/skb boot

modulenounzip /skb_ramfs.cpio.gz nospawn

module /x86_64/sbin/kaluga boot

module /x86_64/sbin/acpi boot

module /x86_64/sbin/spawnd boot

#bootapic-x86_64=1-15

module /x86_64/sbin/startd boot

module /x86_64/sbin/routing_setup boot

Drivers

module /x86_64/sbin/pci auto

module /x86_64/sbin/ahcid auto

General user domains

Barrelfish TN-018 Barrelfish Practical guide - 11

module /x86_64/sbin/serial

Your hello world application (both server and client)

module /x86_64/sbin/hello-cs core=0 server

module /x86_64/sbin/hello-cs core=1 client

Now, you can build your application and verify that binary is created as follows:

$ make

$ ls x86_64/sbin/hello-cs

If everything goes fine, you can run the application in qemu simulator with following command:

$ make sim

At this moment, you should be able see Barrelfish booting and starting your applications which are
then able to communicate by sending ”Hello World” message in infinite loop. Following is a sample
output that you may expect while running this setup.

...

...

...

startd.0: starting app /x86_64/sbin/hello-cs on core 0

spawnd.0: spawning /x86_64/sbin/hello-cs on core 0

startd.0: starting app /x86_64/sbin/hello-cs on core 1

skb.0: waiting for: spawn.1

skb.0: waiting for: pci

spawnd.0: spawning /x86_64/sbin/ahcid on core 0

kernel: 0: installing handler for IRQ 1

kernel: 0: installing handler for IRQ 2

pci_client.c: got vector 2

ahcid: registered device 8086:2922

spawnd.1: spawning /x86_64/sbin/hello-cs on core 1

No bootscript

server: received hello_msg:

Hello World

server: received hello_msg:

Hello World

server: received hello_msg:

Hello World

server: received hello_msg:

Hello World

server: received hello_msg:

Hello World

server: received hello_msg:

Hello World

...

...

...

Barrelfish Practical guide - 12 Barrelfish TN-018

	Introduction
	Writing Hello World application
	Writing A Sample Barrelfish Application
	A Simple Hello World Program

	A Simple Hello World Program Using IDC
	Interface
	Application
	Server side
	Client side
	Building and running the application

