
Towards an unified Oberon V4 

Claudio Nieder (daudio@dial.eunet.ch) 
Ralf Degner (degner@pallas.amp.uni-hannover.de) 

1996-08-04 

mailto:daudio@dial.eunet.ch
mailto:degner@pallas.amp.uni-hannover.de




2 

Introduction 
(last changed 1996-08-10) 

Oberon V4 was ported to several different platforms since it was created. As these implementations were neither 
created nor later maintained under a strict centralized supervision, the implementation of several modules diverge, 
even where there, is no strict need. to.. Fixes and enhancements were not always, applicated to. all implementations. 

Triggered by a mesage sent by Guy Laden to the Oberon Developers list, Ralf and I felt that it was time to try to 
unify the different implementation as much as it is possible, and especially make sure, that all fixes and 
enhancements introduced in newer Oberon versions, are propagated to all other Oberon implementation. We've 
decided to produce a proposal of such a system, and make it available to the Oberon community. We will place the 
module, while we produce them, on some to be defined file server, so that everyone can access them. We will ask 
current Oberon system maintainers to verify, if our modules are indeed up-to-date and usable on all platforms. If 
not we will make. the. necessary adjustments. 
This document is our guideline through the work. It records the list of modules which are part of Oberon V4. It will 
list their current differences and later state the differences which still remain. In the end it will describe the unified 
modules. So this document will have a quite dynamic nature as long as this project is carried on, and stabilize only, 
when we are finished with our work. Finally, only what goes into the chapter "The future" will survive as description 
of the modules in the unified V4. The chapter "The present" will fade out, as it becomes the past. 

If you have any remarks or addition to this text, or find some errors, please send a mail to the maintainer of the 
document, claudio@dial.eunet.ch. 

Thank you very. much. 
PS: As the maintainer of the document, I (claudio) often refer to myself as I instead of always stating my name. I 
don't know if it is. "correct", to. do. this, but it's in. any case easier for me. 

mailto:claudio@dial.eunet.ch


3 



4 

The present 
(last changed 1996-06-23) 

This, chapter gives an overview of the existing modules. 

List of existing Oberon modules 
This is a catalog of the Oberon V4 modules. It describes for each module, the purpose, and if it is/should be specific 
to a certain implementation of Oberon, or if it is supposed to be generic. DefSpecific means, the the whole module, 
including the interface is specific to a given implementation. ImpSpecific means, that while the interface is common 
for all Obérons, the implementation has to be different for every. Oberon. 

Inner Core 
There is one module which interfaces to the basic operating system and is typidly named after the host OS. The 
Amiga is somehow special. The AmigaOS is very modular, and this is reflected by the fact, that there exist a whole 
Range of. Modules all named. AmigaXxxx which correspond to the AmigaOS libraries. 

Module Type Purpose 
Amiga* DefSpecific Interface to AmigaOs, arid the Amiga loader. 
Console ImpSpecific Write to the hosts "console". Used while no viewers available. 
Files ImpSpecific Perform.file operations. 
FileDir ImpSpecific Enumerate.contents, of.a directory.. Exists.only on s.ome Unix Oberon. 
HostSYS ImpSpecific Collects some host specific stuff into one place. 
Kernel ImpSpecific Memory.managment, clock. 
Macintosh DefSpecific Interface to.the Macintosh OS. 
Modules ImpSpecific Module loader. 
Reals ImpSpecific Access to floating point representation. Needed, by Console and Texts. 
Unix DefSpecific Interface to the Unix.OS. 
Win32 DefSpecific Interface to the Windows. 32 bit API. 
Module Kernel is actually DefSpecific, because there exist different versions of the module, using different 
techniques fo garbage collection and for finalization. Modules might also be DefSpecific, because of differences in 
how the Module structure is exported. This is especiallytrue considering, that some Oberons have implemented the 
so called "Object Model", while, others didn't. 

Module Modules, and all modules it imports directly or indirectly, are stored into the boot file. This forms the 
minimum, set of. modules, needed to load further modules. 

FileDir should probably be replaced by the Directories module. Also it is the onlzy module which is not needed for 
booting, although it is included in the Inner Core. Why? I have to look up the exact distinctions between inner core 
and outer core, or make up my own ones. 

Outer Core 
Module Type Purpose 
Display ImpSpecific Driver for the display. 
Input ImpSpecific Keyboard and Mouse input. 
Fonts Common Access, to. fonts. 
Oberon ImpSpecific Event loop, and basic messaging, and some other stuff. 
Texts Common The fundamental, data type. of. Oberon. 
Viewers Common Manage display resource into separate areas. 
X11 ImpSpecific Interface to the X window system. Used on Unjx only 

Fonts is shown as Common although it is actually ImpSpecific. This is caused by efficiency and usability concerns. 
Oberon supplies its own fonts, and thus there is no need for Fonts to be OS specific. But displaying characters with 
the help of the OS is usually much faster. Also it allows to use additionally all fonts supplied by the OS. Of course 
the. use of OS. supplied fonts in. documents will make.them non-portable across Oberon implementations. 

Texts and Viewser need at some rare places a call to an OS specific procedure which causes the display to be 
synchronized. 

Additional drivers 
Module Type Purpose 
Displayl ImpSpecific Additional display functions. 
Printer ImpSpecific Printer, access. 
SCC no. comment Access to. a Ceres, specific serial, device. 
V24 ImpSpecific Access.to.serial device. 
There seem to. be different architectures.for printer driver. I have not yet understood them. 
V24 exists for Amiga, Mac and Windows only. A quick look at the module reveals some differences in the interface. 
The V24 driver was originally deviced just for the Ceres serial port, so it's interface was probably not designed for 
being usable on a whole, range of. different operating systems. 



5 

Displayl is implemented using directly the functions of the underlying OS and window system, therfore I've added it 
to the list of drivers. 

Basic user interface 
Module Type Purpose 
MenuViewers Common The. most used viewers, class, in Oberon. 
System Common Implements.a basic.set of commands. 

Actually System is implementation specific, as it performs several commands using the OS interface modules 
directly. This is done, because lower Oberon modules do not offer the needed functionality in an OS independent 
way. 

Compiler (under construction) 
Module Type Purpose 
OPB 
OPC 
OPL 
OPM 
OPP 
OPS 
OPT 
OPV 
Compiler 

Text System (under construction) 
Module Type Purpose 
Edit Common The. basic Oberon. editor. 
TextFrames 

Graphics System (under construction) 
Module Type Purpose 
Draw 
CraphicFrames 
Graphics 

Picture System (under construction) 
Module Type Purpose 
PictureFrames 
Pictures 
Paint 

How to boot Oberon 
Loading of Oberon is performed by a helping program. I call this program the boot-loader. This program is written 
outside of the Oberon system, and runs on the host operating system. It is not written in Oberon, but in C for most 
implementations (the Obron for Amiga is written in Modula-2). To my knowledge, there are two boot methods in 
usage, one where the boot loader itself is able to load Oberon object files, and one, where the loader just knows 
how to load a bootfile. The bootfile contains a prelinked version of the minimum set of modules needed to further 
load the Oberon system. I.considerthe bootfile method the.one.to prefer. 

Selfcontained boot program 
This is the method choosen in Sun 3 Oberon, and later ported to the Amiga. The boot loader program knows itself 
where to look for the object files, and about the inner structure of the object file. It thus duplicates the code 
implemented in module Modules and part of module Files. To avoid duplication of code, Amiga Oberon 
implements. Modules by calls back into.the loader program. 

Bootfile 
This is method choosen for the Unix imlementations except Sun-3. The boot loader program doesn't know 
anything about Oberon object files. It just loads a prepared bootfile and calls a predefined entry point within the 
bootfile. 

The bootfile is build by a linker which links a minimum set of Oberon modules. For Unix Oberon these are the 
modules Unix, Console, Kernel, Files, Modules. Thus there is no code duplication as in Sun-3 Oberon and 
everything is implemented, in. Oberon and. not partly in the. loader language, as. in. Oberon for. Amiga. 

The great advantage of this boot mechanism, is that the code which has to be written in a foreign language can be 
very, minimal, and. it avoids code, duplication. 



6 

The future 
Project status 
(last changed 1996-08-10) 

Persons 
This lists all persons with which I had contact with during this project. It helps me keep track of who offerd what 
help, and how I can reach them. 

Aubrey Mcintosh <mcintosh©)ccwf.cc.utexas.edu> 

Offered to do Solaris and Windows specific modules. Can test AIX (RS/6000) and. MacOS, (PowerMac) versions. 

Claudio Nieder<claudio@dial.eunet.ch> 

I. coordinate the effort, and will do. some, programming for Irix. 

DougDanforth <danforth@csli.stanford.edu> 

Offered to do Windows specific modules. 

Erwin Oertli <oertli@inf.ethz.ch> 
Offered to do OS/2 specific modules. 

FritzEngebretsen <newtonst@speakeasy.org> 

Offered to test the MacOs versions. 

Guy Laden <laden@math.tau.ac.il> 

Offered, space on his server for UnifiedV4. 

John Landahl <jlandahl@sci.nwfsc.noaa.gov> 

Offered, to. test the Irix versions. 

Peter Froehlich <p.froeh I ich@amc.cu be.n et> 

Offered.to. do work on. the. compiler, after. September 1996. 

RalfDegner <degner@pallas.amp.uni-hannover.de> 

Maintains. Oberon.for Amiga. 

Status 
Module Type Status Last modified Owner 
AsciiCoder Common Completed. 1996-08-01 -

ClockElems Common Completed. 1996-08-04 -

Console Common Completed. 1996-06-17 -

Display ImpSpecific Interface, extended. Otherwise not yet touched. - -

Amiga.HostSYS SymSpecific In work. Will be extended as necessary. ? Ralf 
SGI.HostSYS SymSpecific In work. Will be extended as necessary. 1996-07-31 claudio 
In Common Completed. 1996-07-31 -

Input ImpSpecific In work. ? Ralf 
Out Common Completed. 1996-07-31 -

Reals Common Completed. 1996-06-17 -

Texts Common Completed. 1996-07-31 -

Viewers Common Completed. 1996-06-16 -

The possible values of Type are: 
Common The same source is used across all platforms. 
ImpSpecific Different, sources are. used, but the implementation differs. 
SymSpecific Although the. same, objects are exported, the. symbolfile differs, because of different constant values. 
DefSpecific The module interface, is not the. same on all platforms. 

When a module is in work, an owner is assigned to the module. Nobody else should modify the module. Modules 
without an owner are free to be. claimed by somebody who wishes.to make changes to. the module. 

Unified V4 Implementation 
(last changed. 1996-07-31) 

mailto:claudio@dial.eunet.ch
mailto:danforth@csli.stanford.edu
mailto:oertli@inf.ethz.ch
mailto:newtonst@speakeasy.org
mailto:laden@math.tau.ac.il
mailto:jlandahl@sci.nwfsc.noaa.gov
mailto:ich@amc.cu
mailto:degner@pallas.amp.uni-hannover.de


7 

Distribution 
Traditionally the Oberon distributions were binary distributions. One received a package with all modules 
precompiled, and. no source. Because of that, the same modules, were contained in. every distribution. 

As it is now possible to distribute the sources, a different approach is possible. The binary, and platform dependent 
distribution, will contain the loader, the bootfile, and a minum set of modules, which enables the compilation of 
further source. The remaining of the Oberon system is made available as source. Thus one sees more clearly, what is 
common.for. all platforms. 
The. minimum set. of modules will consist of 

- Bootfile with, modules. "OS", HostSYS, Reals, Console, Kernel, Files and Modules. 
- Additional inner, core module FileDir. 
- The. outer core modules. Display, Input, Fonts, Oberon, Texts, and Viewers. 
- The. basic user, interface MenuViewers, and System. 
- The.compiler, modules Compiler, OPB, OPC, OPL, OPM, OPP, OPS, OPT. and OPV. 
- The helping module. Folds.and. FoldElems.. (*: FoldElems are. useful, but unfortunatly not well integrated..*) 
- Maybe, some unpacking tool. like. AsciiCoder. This, depends on how the Distributions are made available. 

"OS" stands for operating system specific modules. It is an open point, if there is only one "OS" module, or if there 
should be several modules, e.g. one for the bootfile with the minimum functions needed there, one for the 
remaining part. Or maybe it would be better to just include whatever is needed directly in the needing modules 
(Display, Input etc.) themselves. Or even split the implementation specific modules in a Xxxx and XxxxBase, where 
XxxxBase would contain, the. OS stuff. 

While AsciiCoded files occupy more place then a pure Oberon Text file, there is a great advantage with them. They 
are text files, which can be moved to almost any Platform without problems. With other kind of distributions there 
might be problems, especially on the Macintosh. In any case, only archives which can be unpacked using a Oberon 
program should be used. This only guarantees, that everybody will have the unpacking tool. 

The Modules 
Console 
(last changed 1996-06-23) 

Common, implementation.for all platforms. 
Console exports a small set of procedure which allow a program to write to an output device almost always present 
in the underlying system. Console is typically used to write messages, which might occur at times where no Oberon 
viewer is available, e.g.. during boot time. On Unix systems it will write to. standard output. 

. Interface 

Every procedure prints the value of the passed variable. Bool, Dump, Hex, Int and Real write a space in front of the 
value. Hex printthe value of the LONGINT. parameter, as an eight digit hexadecimal number. 

Dump prints the content of the passed variable in hxadecimal, each byte as 2 digit hexadecimal number. The bytes 
are printed in the same sequence as they are stored in memory/from the lowest to the highest address. While 
passign a LONGINT variable with value 1 will always result as 00000001 when printed by Hex, it could be printed as 
01 00 00 00 or 00.00.00.01 by. Dump, depending whether the machine uses little-endian or big-endian, numbers. 

Display 
(last changed 1996-06-23) 

Display has been extended by a procedure called Synchronize. This procedure has to be called after drawing 
operations were performed, to make sure, that the display seen bjf the user is up to date. Oberon.Loop will itself call 
the procedure after the execution of some command, so that normal user commands do not have the need for 
calling Synchronize. 

HostSYS 
(last changed. 1996-07-31) 

(Almost) common interface for all platforms, different implementations. The "Almost" comes from the fact, that 
although the same constants are available on all implementations, their actual values may differ. Thus the symbol 
file, is not identical. 

This module captures those system specificness, which are considere to be important for the "lower OS" only. No 
user written module, should ever. have, the need to access HostSys. 

Interface 

BigEndianMachine is.TRUE for. Amiga and SGI.. It is FALSE for.???. 

IsNameChar returns true, if. the given character should be. recognized, by. the.Texts, scanner as part of a. name. 
IsNameCharl is the similar to IsNameChar, but is used for testing the first character. It generally accepts less 
characters, as. IsNameChar (e.g. no numbers). 



8 

StdOut prints a string of given length to an output device which should be almost always present, even when 
Viewers are not availbale, e.g. during boot time. On Oberon implementations based on Unix this would be stdout. 
On native Oberon implementations this could be some serial port. If no such output stream is available, then it 
should simply do. nothing, but never cause an error. 

Note: the passed string has not to be OX terminated. The length passed thorugh parameter len is the only valid 
indication, of.the number, of. characters to. write. 

toHost transforms a character in the host character set to the. equivalent character in the Oberon character, set. 

toOberon transforms a character, in the Oberon. character set to the. equivalent character in the. host character, set. 

Note:. toHost and toOberon are implemented so that toHost(toOberon(ch))=ch and toOberon(toHost(ch))=ch. 

In 
(last changed 1996-07-31) 

Common implementation.for all. platforms. 

Interface 

Input 
(last changed. 1996-06-23) 

Common interface for all platforms. Implementation is system specific. Maybe the system specific part is moved to 
a module InputBase. 

Interface 

Keyboard input, is read via Read. Available tells, how many, characters are. known to. be available. 

Mouse input is received through Mouse, which returns the pressed butons and the current position. The maximum 
x, and. y. values can be. limited.. The limits, are set via. SetMouseLimits. 

Time returns the elapsed time, since, system startup. This, values unit is 1.0/TimeUnit seconds. 

Out 
(last changed. 1996-07-31) 

Common implementation:for all. platforms. 

Interface 

Reals 
(last changed. 1996-06-23) 

Common implementation.for all platforms. 

Interface 
Convert/ConvertL convert non-negative REAL/LONGREAL values into a string. Only the non-fractional part is 
converted. The string contains the value in reverse order and padded with zeroes. Thus converting 123.789 with n=6 
return "321000". 

ConvertH/ConvertHL convert a REAL/LONGREAL to an 8/16 digit hexadecimal number, representing the internal 
storage of the value. They are used by the ..RealHex procedures in Texts. They are mostly useful for debugging 
purpose. 

Note: The strings returend by all four Convert... procedures do not have a terminating.OX. 

Expo/ExpoL return, the. exponent (base.2) of.the REAL/LONGREAL value. 

SetExpo/SetExpoL modifies the exponent (base 2) of the REAL/LONGREAL value. 

Ten/TenL return the value of 10 to the power- e, where e is of course the passed parameter and has nothing to do 
with the e=2.718... used in maths. 

System and HostSystem 
(last changed. 1996-06-23) 

System implements a basic set of commands. These commands allow the user. The definitio of System should be 
the same for all implementations. But some implementations might have the need for additional commands. These 
shall not. be added to system,, but. separated, in a moudule. names. HosiSystem, e.g. AmigaSystems, UnixSystems etc. 

Texts 
(last changed 1996-07-31) 

Common implementation for. all platforms. 

Interface 



Viewers 
(last changed 1996-06-23) 

Common implementation for. all platforms. 

Interface 


