
BlackVME Developer's Manual

Chapter F1

Introduction to FPGA Development
© 2012 SkuTek Instrumentation

410 Linden Street, Rochester, NY 14620
(585) 256 0842

http://www.skutek.com

Summary: This chapter of the BlackVME manual is a gentle introduction to the art of programming the
field programmable gate array (FPGA) that is present on board. We will not cover each and every detail
of the black magic. We will rather walk the reader through a set of code snippets lifted from our own
work with the intent to provide useful examples.

Table of Contents
1 The objective of this chapter ..2
2 The FPGA literature ...2
3 FPGA architecture and programming ..3
4 Structure of the FPGA project ..4
5 Two kinds of logic circuits, combinatorial and clocked ...5
6 Controlling the FPGA with a register ..5
7 Reading from the FPGA device using a register ..8
8 Dealing with clock domains ...9
9 Using a processor's bus address ...9
10 Making the components visible throughout the project ...12
11 Making use of the register component ...13
12 Utilizing the dual-port memory blocks ..14
13 Addressing blocks of on-chip memory ..15
14 Multiplexing BRAM memories for Blackfin readout ..16
15 Synchronizing an external signal to the FPGA clock ...17
16 Delaying a signal by a fixed number of clock cycles ...17
17 Generating a short pulse lasting one clock cycle ...18
18 Delaying a one-bit signal by a variable number of clock cycles ..18
19 Delaying a multi-bit signal by a variable number of clock cycles ...19
20 Driving the clock off-chip ..21
21 Driving the data bits off-chip ...24
22 Conclusion and outlook ...25
23 Important Notice ..26

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 1

1 The objective of this chapter

This chapter of the BlackVME manual is a gentle introduction to the art of programming the field
programmable gate array (FPGA) that is present on board. We will not cover each and every detail of
the black art. We will rather walk the reader through a set of code snippets lifted from our own work
with the intent to provide useful examples. We plan to achieve the following.

• Explain what is the FPGA and what it is not.
• Explain the difference between programming the FPGA and programming a processor.
• Advise how to start with FPGA programming and what to expect.
• Provide examples of FPGA constructs that we found useful in our own work.

The chapter was motivated by real life. One of our customers decided to develop his own FPGA code,
what is not a piece of cake at all. This chapter will help jump start the effort. It will also help other
BlackVME users developing their own FPGA configurations.

Our company is helping the customers in their FPGA applications in two separate ways.

• We provide FPGA programming services to our customers.

• The FPGA firmware can be developed by the customer. The template for the FPGA firmware
development is available upon request at no cost. The template consists of the User Constraint
File (UCF) with all the FPGA pins prepopulated in the correct locations. The code file written
in the VHDL language consists of the PORT declarations corresponding to the UCF file. The
body of the VHDL file is empty to allow the developers to fill it with their own code.

2 The FPGA literature

Extensive literature on FPGA programming is available. We recommend the following reading.

1. H.F-W.Sadrozinski, J.Wu, Applications of FPGA’s in Scientific Research (book).

2. V.A.Pedroni, Circuit Design and Simulation with VHDL (book).

3. K.Skahill, VHDL for Programmable Logic (book).

4. P.P.Chu, FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Version (book).

5. Xilinx Reference Manuals, available as part of the Xilinx FPGA development software.

6. Xilinx Application Notes available from http://www.xilinx.com/. Some of the notes are
excellent. Xilinx keeps reshuffling their website at an amazing rate, and therefore we cannot
provide web pointers that are guaranteed to work. The reader may try the following:
http://www.xilinx.com/support/documentation/application_notes.htm

We recommend the book by Sadrozinski and Wu because it is the only literature position addressing
applications of FPGAs in High Energy Physics. The books by Pedroni and by Skahill are very well
written introductions to VHDL programming. Xilinx manuals cover the specifics of the Spartan-6
clocking, buffering, and memory structures. Also the book by P.P.Chu is offering insight into these
issues, even though it describes the previous FPGA family. Note that in Xilinx parlance Spartan-6 was
a direct successor to Spartan-3. The book by Chu is not as outdated as its title might suggest. It is an
excellent book worth studying in detail.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 2

3 FPGA architecture and programming

Parts of this section are repeated from Chapter 1 for reader's convenience. We will describe the
fundamentals of the Field Programmable Gate Array (FPGA) architecture. The name “gate array” is a
bit misleading. It was coined long ago when the FPGA chips indeed consisted of logic gates and little
else. Nowadays the FPGAs contain many high-level blocks such as memory blocks or arithmetic-logic
units. Briefly speaking, a modern FPGA is a digital chip consisting of many silicon blocks (so-called
cores) such as flip-flops, memory registers, logic gates, and arithmetic-logic units. The cores are
connected with data paths (“wires” or “signals”) that can be selectively enabled or disabled in a process
called “configuration”. Before the configuration the chip is dormant and it is doing nothing. All the
paths are closed. The configuration usually happens at power-up. It consists of loading the
“configuration file” (also called the “bit file”) from the flash memory to the FPGA chip. Configuration
can be also performed on demand while the system is running. After the configuration has occurred,
some data paths are open, while others are still closed. Those paths, that are open, form an
interconnection pattern (the “netlist”) between the cores. The data words flow along the open paths,
from core to core, according to a periodic “clock” which must be supplied to the FPGA chip. On each
clock cycle the data item is transformed by a particular core, and then it is transferred to the next core
at the end of the clock cycle. This mode of operation is commonly named “a bucket brigade”. A more
formal name is a “pipeline” formed with the cores strung together, one after another.

The art of FPGA programming consists of devising the network of connections between the FPGA
cores in order to form the pipeline, which transforms the data according to the desired algorithm. The
conceptual difficulty lies in the fact that the network bears little resemblance to the algorithm, at least at
the first sight. There is a correspondence between the connections and the desired result at the end of
the pipeline, but it is only indirect. The FPGA programmer must develop enough insight into the FPGA
operation in order to devise the connections needed to realize the desired result. Another way of stating
the difficulty is to note that the FPGA “program” does not describe a process unfolding in time (like a
computer program would do), but rather a network of active connections between the cores. Compared
with the computer program, there is an additional level of indirection between the FPGA “program”
and the desired result.

Fortunately, in many cases the understanding of the FPGA operation does not need to be detailed to the
last bit. The task of FPGA programming is greatly simplified with a high-level Hardware Description
Language (HDL) such as VHDL or Verilog. The connections are specified in a synthetic form in HDL,
and then automatically translated into the actual network for the particular FPGA. There are also
Matlab-based graphical tools that simplify the task of translating the abstract algorithm into the HDL.
Nevertheless, the FPGA programming remains an art even when using the high-level tools. Details like
numerical error propagation, integer fixed-point arithmetic, and many others need to be mastered in
order to transform the abstract algorithm into the form that the FPGA tools can tackle.

BlackVME is composed of two independent processing units, the FPGA and the Blackfin digital signal
processor (DSP). Both processing units cooperate on data processing, according to the BlackVME
architecture described in Chapter 1 of this manual. Hardware-wise, the FPGA is connected to the
memory bus of the DSP (see the block diagram in Chapter 1). The FPGA is a memory-mapped
peripheral with several registers assigned to hardcoded addresses in the Blackfin memory space. The
FPGA addresses are collected in a dedicated header file that is referenced by the C programs.
(According to the C parlance, the header file gets #included in the C program.) The definitions
contained in the header file agree with the addresses that are hardcoded in the FPGA firmware.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 3

4 Structure of the FPGA project

We will use VHDL for the rest of this chapter. A Verilog project is very similar, but it uses different
keywords. We will use the word “program”, even though a more appropriate term would be “netlist
configuration”. The VHDL project is composed of the following.

• The User Constraint File (UCF) collects the physical information such as pin locations, I/O
voltages, I/O slew rates, clock frequency, and timing requirements. The format of the file is
documented in the Xilinx Constraints Guide available from ISE Help menu. The free template
which you have received from us includes the UCF file with all the information already
prepopulated. You should review details such as I/O voltages to match the voltage used on your
daughter card. You may also need to change the single-ended LVCMOS to differential LVDS,
according to the signaling solution that you are using.

• The main program file establishes the communication between the netlist that is internal to the
FPGA and the FPGA pins. The correspondence is defined in the PORT declaration of this file.
The signal names in the PORT should correspond to names in the UCF file, where the pin
locations are assigned to those signals.

• In addition to the PORT, the main program file also contains the ARCHITECTURE of the
design. Any valid VHDL code can be put into the architecture section. It is OK to put all the
code in this place in small projects. Larger projects should be divided into several files to
improve maintainability.

• The lower level files are similar to the main file. They also have the port and the architecture
sections. The names of their port “pins” do not refer to the physical pins, but rather to the
internal “pins” of the main file. Therefore, the lower-level files “plug into” the main program
file as “components”. The keyword “component” is used in the main file referring to the lower
level files.

• The lower level files can themselves refer to the next lower level. The hierarchy continues, in
principle indefinitely.

• In addition to components defined in the VHDL files by the developer, there are two types of
components provided by Xilinx. The library components are described in Libraries Guides
available from ISE help. These components are typically small. The Core Generator
components are large components that can be extensively customized with Core Generator
interactive menu system. Core Generator can be started from the Windows Start menu.

• The detailed information is available in the XST User Guide and other guides that are available
from ISE Help menu.

ISE development system also supports the mixed-language projects where some components are
developed in VHDL, while some others are developed in Verilog, ABEL, or schematic diagrams. We
will not cover these details in the present tutorial. Extensive documentation on this and other advanced
topics is available from the ISE Help menu.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 4

5 Two kinds of logic circuits, combinatorial and clocked

Logic circuits can be broadly divided into two kinds. A combinatorial circuit is composed of logic
gates, multiplexers, and other standard logic components connected together. Such a circuit is realizing
a logic function, also known as a boolean function. An example of a logic function might be

Y = A and B or C,

where A, B, C represent signals (wires) whose values can be 0 or 1, represented by LOW or HIGH
voltage levels. The logic functions are constructed according to the boolean algebra of logic values 0
and 1. The boolean circuits are also known under the name asynchronous logic. The boolean circuits
can be of any complexity. Very complex such circuits will have many levels. A level means “output of
this gate is connected to the input of the next gate”. Every gate contributes a few nanoseconds of
propagation time to the overall response time of the circuit. The response time of a multilevel
combinatorial circuit can be pretty long. Multilevel asynchronous circuits can produce glitches, also
known as hazards. A glitch is a momentary pulse at the output that is due to unequal propagation delays
through parallel branches of the multilevel circuit. Since the propagation delays are never exactly
equal, there is always a risk of a glitch in every asynchronous circuit of appreciable complexity.

In principle, the FPGA can be used to implement a purely combinatorial circuit of tremendous
complexity, because it contains many millions of logic gates. The response of such a circuit would last
pretty long, and the potential for glitches would be huge. Therefore, the FPGA is always using a clock
that is a periodic square wave connected to the dedicated clocking pin. Quite often there are more than
one clock in the FPGA system. BlackVME uses two clocks: the main board clock is used for any
purpose such as clocking the ADCs, while the processor clock is used to connect the FPGA to the on-
board Blackfin processor. The clock pins are preassigned in the free template that you received from us.

The circuits that are clocked are named synchronous. The FPGA works according to this principle. We
call it a “bucket brigade”. A more formal name is a “pipeline” formed with the structural elements
strung together, one after another. In the rest of this chapter we will be dealing with synchronous logic
most of the time.

6 Controlling the FPGA with a register

We just said that the boolean logic is represented with values 0 and 1, meaning LOW and HIGH
voltage levels. It is true in the logic textbooks, but it is not how the electrical connections work with
FPGAs. There is one more electrical state that we need to use, and that is OFF, coded as 'Z' in the
VHDL language. The device that is always actively driving the connection either LOW or HIGH
cannot be be put on a bus where it may cause the contention with other devices. We need to be able to
turn the device OFF, and this is what the high impedance state 'Z' is doing for us. We are now ready to
see the first example circuit coded with the following VHDL snippet.

IOBUS <= local_signal WHEN read_enable = '1' ELSE (others => 'Z');

This line of VHDL should be read as follows. The IOBUS is declared in the PORT. It is assigned to the
off-chip bus in the UCF file. The bus can be driven by the local_signal when the read_enable is
requesting the FPGA to do so. Otherwise the FPGA cuts off the output drivers. The VHDL construct
others is a handy notation meaning “all the other bits of IOBUS”. This shortcut evaluates to “all the

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 5

bits” when used as shown. The reader needs to get used to this shortcut that is used very often. We will
now show the entire VHDL “program” surrounding the snippet.

1. -- CTRL_reg_CPU_writes.vhd. A register Blackfin --> FPGA.
2. -- (C) Wojtek Skulski 2003-2011.
3. -- This register can be written and read back by the CPU.
4. -- It does not read data from the FPGA fabric.
5. -- It can only read back the data previously writ ten to it.
6. -- Input: CLK, CS, WR, RD active HIGH, the usual r/w controls.
7. -- CS should be tied to the address decoder at the higher level.
8. -- Output: regout is static data to drive the co ntrolled circuitry.
9. library IEEE;
10. use IEEE.std_logic_1164.all;
11.
12. ENTITY CTRL_reg_CPU_writes IS
13. GENERIC (regWdt: INTEGER := 16);
14. PORT (
15. CLK : in STD_LOGIC; --- system clock from BF
16. CS : in STD_LOGIC; --- chip select
17. WR : in STD_LOGIC; --- write enable
18. RD : in STD_LOGIC; --- read enable
19. IOBUS : inout STD_LOGIC_VECTOR (regWdt-1 downto 0);
20. regout: out STD_LOGIC_VECTOR (regWdt-1 downto 0)
21.);
22. END CTRL_reg_CPU_writes;
23.
24. ARCHITECTURE CTRL_reg_behavior OF CTRL_reg_CPU_w rites IS
25. SIGNAL rena, wrena: STD_LOGIC;
26. SIGNAL local: STD_LOGIC_VECTOR(regWdt-1 downto 0);
27.
28. BEGIN -- ARCHITECTURE IMPLEMENTATION
29. wrena <= '1' WHEN ((CS='1') AND (WR='1') AND (RD = '0')) ELSE '0';
30. rena <= '1' WHEN ((CS='1') AND (WR='0') AND (RD = '1')) ELSE '0';
31.
32. IOBUS <= local WHEN rena = '1' ELSE (others => ' Z');
33.
34. register: PROCESS (CLK, wrena) BEGIN
35. IF rising_edge(CLK) THEN
36. IF (wrena = '1') THEN
37. local <= IOBUS; – from Blackfin to fabric
38. END IF;
39. END IF; -- CLK
40. END PROCESS register;
41.
42. regout <= local; -- static output from the regis ter to controlled logic
43.
44. END CTRL_reg_behavior;

The reader needs to consult the references for a detailed explanation of the VHDL syntax. Here we will
explain what this circuit is doing. First of all, this register is a component declared in its own file. The
component file is only a template that can be instantiated in the main VHDL file as many times as
needed. In this respect the register is like an integrated circuit that gets purchased from a store in
several copies. In the electronic industry all the copies are identical, but here they are not because the
template is parametrized with the keyword GENERIC meaning that the bit width is specified while
instantiating the template. The default width “16” is only a placeholder. The component has several

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 6

inputs: the clock, the active-high read/write strobes RD and WR, and the active-high chip select CS.
The IOBUS will be connected to the system bus when instantiating the component. Finally, regout is a
static array of bits that can be connected to anything inside the FPGA. If FPGA had LEDs on top, we
could connect regout to these LEDs and turn them on and off by writing to the register.

The register is static in the following sense: imagine that we write a “1” to one of the bits. This “1” will
stay permanently there until we decide to write a “0” to the same bit. Therefore, this component is
intended to control some circuitry in the FPGA. The register bits can turn some options ON and OFF.
Alternatively, the value written to the register can be used as a calculation coefficient.

The register is read/write in the limited sense. Any value written to the register can be read back by the
Blackfin processor. We say that the value has been latched. However, the register cannot be used to
read any output calculated by the FPGA. In that sense the register is unidirectional. It can transfer the
bit pattern from the processor to the FPGA, and it can remember its value, but the other direction does
not work. The reason for this restriction is that any circuit within the FPGA can have only one driver.
Since the driver in this circuit is driving towards the FPGA, adding the opposite driver is not possible.

We said that the latched value can be read back, what implies some sort of memory that is implemented
in the section beginning with the keyword PROCESS. The word “register” is a hint for the reader, but it
is a purely decorative label. Most often such labels are omitted from the VHDL program. The memory
is always implied when the keyword PROCESS is used together with a clock, which is the case in this
example. The clock is not indicated by the name CLK, but rather by invoking the predeclared function
rising_edge . It is the combination of the PROCESS with the statement IF rising_edge , that makes
the PROCESS into a flip-flop. A flip-flop is a memory element that can stay ON or OFF. The names
“register” and “flip-flop” are in fact synonymous.

If this sounds confusing, then it really is. The reason for the confusion is that the VHDL programs are
not being literally translated into the FPGA circuitry. The VHDL compilers (and the Verilog as well)
are using a method called “inference”. The compilers do not translate the text, but rather they scan the
text looking for familiar patterns. When the compiler sees the pattern, it will “infer” the circuitry.
Another name for infer is “guess”. Yes, it is right. The compiler is guessing what the programmer
meant to say. It is in the programmer's best interest that the compiler is guessing right. The programmer
is advised to follow the code patterns that were suggested by the compiler vendor. The patterns are
available from the ISE Toolbar after pressing the rightmost icon that looks like a bulb. Navigate to
VHDL → Synthesis Constructs and use only these snippets in order to help the compiler guess right.

One has to get used to such patterns. After a while they will become the second nature. The patterns
may look confusingly similar to one another. Here is an example of an apparent similarity.

1. PROCESS (CLK, RST) BEGIN
2. IF rising_edge(CLK) THEN
3. IF (RST = '1') THEN
4. local <= (others => '0');
5. ELSE
6. local <= previous;
7. END IF;
8. END IF; -- CLK
9. END PROCESS;

This snippet may look confusingly similar to the previous one. It translates to a one-clock delay. The bit
pattern local will be an exact copy of the previous , but delayed by a single clock cycle. The signal
RST implements a reset that holds the bit pattern at “00..0”. We did not use labels in this example.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 7

7 Reading from the FPGA device using a register

We need a complementary operation to the one discussed previously. The following code will allow to
read a single word from the FPGA. This register is again unidirectional for the reason discussed earlier.

1. -- CTRL_reg_CPU_reads.vhd.
2. -- (C) Wojtek Skulski 2003-2011.
3. -- This register cannot be written by the CPU. Th ere is no WR control.
4. -- Data either comes from another clock domain or it is static.
5. -- If the other domain is not stopped then local will be complete mess.
6. -- Input from CPU: CLK, CS, RD active HIGH.
7. -- CS should be tied to the address decoder at the higher level.
8. -- Input from the fabric: data to be read by the CPU from the FPGA fabric.
9. library IEEE;
10. use IEEE.std_logic_1164.all;
11.
12. ENTITY CTRL_reg_CPU_reads IS
13. GENERIC (regWdt: INTEGER := 16);
14. PORT (
15. CLK : in STD_LOGIC; --- system clock from Blackfi n
16. CS : in STD_LOGIC; --- chip select
17. RD : in STD_LOGIC; --- read enable
18. IOBUS : inout STD_LOGIC_VECTOR(regWdt-1 downto 0);
19. fabric: in STD_LOGIC_VECTOR (regWdt-1 downto 0)
20.);
21. END CTRL_reg_CPU_reads;
22.
23. ARCHITECTURE CTRL_reg_read_behavior OF CTRL_reg_ CPU_reads IS
24. SIGNAL local: STD_LOGIC_VECTOR(regWdt-1 downto 0);
25.
26. BEGIN -- ARCHITECTURE IMPLEMENTATION
27.
28. IOBUS <= local WHEN (CS='1') AND (RD= '1') ELSE (others => 'Z');
29.
30. PROCESS (CLK) BEGIN
31. IF (rising_edge(CLK)) THEN
32. local <= fabric; -- the crucial modification is here
33. END IF; -- CLK
34. END PROCESS;
35.
36. END CTRL_reg_read_behavior;

This code is very similar to the previous one, but the signal drivers are reversed. The FPGA fabric is
now driving the local register upon the rising edge of the clock. Previously it was the IOBUS whose
value was latched, but now it is the fabric that is coming from within the FPGA. The modification is
easy to overlook when looking at the text.

The lesson from the examples is that a seemingly minor modification of the source code can lead to
profoundly different circuitry. In one case we described a register controlling the FPGA, in the other
case we described a readout register, and in the meantime we described a delay by a single clock.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 8

8 Dealing with clock domains

The previous example included a warning “if the other domain is not stopped then local will be
complete mess”. It refers to the fact that the FPGA operates under two different clocks. One is the
“main clock” that is driving the daughter card. The other is the CPU clock that is driving the readout
bus. The circuitry that is synchronized to a particular clock is called the clock domain of this clock.

The two clocks are completely independent. Imagine that data words are changing under both clocks.
In the ADC clock domain the fresh ADC samples are being written to the word named fabric in the
previous example. At the same time the Blackfin is reading the same word using the local register that
is controlled by the Blackfin clock. It is easy to imagine that fabric may change in the middle of the
local being read out. The result will be a “complete mess” because some newly arrived fabric bits
will make it through the fabric → local transition, and some perhaps not. One should remember that
the circuitry is never perfectly balanced along all data paths. Some bits will be delayed by a fraction of
a nanosecond more than other bits, and the slower bits will not make it.

The comment was warning against such a situation and at the same time it provided a hint that “the
other domain should be stopped”. It does not mean that the clock itself should get stopped. Stopping
the clock will throw all the phase lock loops (PLL) out of synch. Clocks should never get stopped.
However, the data acquisition can be stopped. And it should, because there is little point in reading the
sample that is changing during the readout. Once the data words in the ADC clock domain get static,
the other clock domain can safely read them out.

The simplest method of dealing with multiple clock domains is to stop changing the data words in one
clock domain, while the words are being used in the other domain. There are other methods allowing
both domains to keep running, but they are more complicated. For example, the designer may use a
first-in, first-out buffer (FIFO) between the two domains. The FIFOs provide means of “crossing the
clock boundary” to avoid the bit synchronization problems. The FPGA programmer has to study the
relevant chapters describing the particular solutions recommended by Xilinx. (Keep in mind that other
FPGA vendors may have implemented the relevant components differently from Xilinx.)

We conclude this section with two recommendations concerning multiple clock domains.

1. Always stop changing the data in the clock domain that is producing the data before using the
data in another clock domain. This solution is pretty radical, but it is guaranteed to work.

2. Read the relevant chapters from the FPGA textbooks dealing with the particular FPGA family
that you are using.

9 Using a processor's bus address

Life would be simple if we needed one input and one output register in the FPGA. Unfortunately, the
FPGA is a big device with many resources that can be addressed individually by the Blackfin
processor. Inside the FPGA the resources are connected to an address decoder, which is yet another
pattern of the VHDL code. There are several recommended ways of writing the decoder in VHDL.
First we will show the code snipped from the ISE Language Templates, and then we will show another
equally valid way of coding the same.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 9

1. --- Address decoder
2. --- Code pattern from ISE Language Templates -> S ynthesis Constructs
3. process (clock) begin
4. if (clock'event and clock ='1') then
5. if (reset = '1') then
6. output <= "0000";
7. else
8. case input is
9. when "00" => output <= "000 1";
10. when "01" => output <= "00 10";
11. when "10" => output <= "0 100";
12. when "11" => output <= " 1000";
13. when others => output <= "0000";
14. end case;
15. end if; -- reset
16. end if; -- clock
17. end process;

First of all we see that VHDL is case insensitive. Second, here we see yet another incarnation of a
“process”. Third, Xilinx chose not to use the function rising_edge(clock) , which we find more
descriptive than clock'event and clock ='1' . The two idioms are exactly equivalent. Either way
the VHDL compiler will infer output as a register that is synchronized to the clock.

The pattern of a “walking 1” in lines 7 through 10 implements a decoder. Every binary representation
of the input address gets translated to a “1” in the corresponding position. The output bits should be
connected to chip-select CS inputs of the register components shown earlier. Two or more registers will
be prevented from driving the bus because only a single “1” is active at any given time.

We now demonstrate another way of writing the address decoder that looks remarkably different. We
use this form in our own VHDL code.

1. RawSelect <=

2. "000 1" WHEN BF_ADDR (25 downto 2)="000000000000000000000 001" ELSE

3. "00 10" WHEN BF_ADDR (25 downto 2)="00000000000000000000 0010" ELSE

4. "0 100" WHEN BF_ADDR (25 downto 2)="0000000000000000000 00011" ELSE

5. " 1000" WHEN BF_ADDR (25 downto 2)="000000000000000000 000100" ELSE

6. (others =>'0');

7. RegSelect <= RawSelect WHEN (BF_AMS0 = LOW) AND (BF_AMS1 = HIGH)

8. ELSE (others => '0');

Unlike the previous decoder, the resultant circuit will be combinatorial rather than registered. It will be
susceptible to glitches. It is virtually guaranteed that the glitches will occur in RawSelect because all
23 address bits cannot be perfectly synchronized. The designer must somehow know that glitches will
not be a problem before using this circuit. How can we know that this solution is safe to use?

The answer can be found in the Blackfin data sheet that specifies the timing between the address bits
and the read/write strobes implementing the industry-standard memory bus. The WR and RD strobes
that are connected to the registers (see previous code) become active many nanoseconds after the
transitions of the address bits. Even though the RawSelect may not be valid during the address
transition, this period of invalidity happens outside the active time window that is defined by the

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 10

memory strobes. One should note that the strobes originate from a thoroughly tested microprocessor
chip and therefore they are safe to use. The conclusion from this example is that the validity of a
circuit cannot be established without knowing the context in which this circuit will operate. In
principle, glitches are a bad thing. However, their presence may be rendered completely irrelevant by
the context of the application.

There are a few other important points to note in this example. First, we are using the address bits of
the Blackfin processor BF561. The designer needs to study the processor's data sheet and its Hardware
Reference Manual (HRM) before implementing the address decoder. The processor must operate in the
proper memory mode (32-bit mode in this case) because we are decoding its address bits downto 2.
The two least significant bits (LSB) are not decoded because they are not driven in the 32-bit mode.
These details are explained in the HRM.

Another detail concerns the asynchronous memory space (AMS) strobes. There are four such signals in
case of the BF561, AMS0 through AMS3. Each one is addressing a separate 64-megabyte range of
memory. Two of these are used to address the Ethernet and the USB chips outside the FPGA. The
remaining two, the AMS0 and AMS1, are routed to the FPGA. These two signals are used in our
decoder to qualify the address bits. According to the code from the previous page, the signal
RegSelect is active (i.e., non-zero) when the AMS1 is active. This strobe is directed to the AMS1
address range that can be found in the processor's data sheet. Utilizing the AMSx strobes is mandatory
because the same ADDR bit combination will occur in four cases, once per AMS memory space. If we
neglected to use the AMS strobes, the FPGA could respond to the memory request directed to the
Ethernet chip, causing an immediate system crash.

One has to combine all the above information in order to calculate the memory addresses issued by the
processor. The following details have to be kept in mind.

1. Two LSBs 0 and 1 are not used by the decoder because the processor is working in the 32-bit
mode. Consequently, one should extend the bit patterns to the right by two bits “00” before
calculating the addresses to be used in the C header files.

2. The AMSx spaces start at fixed “base addresses” specified in the data sheet. The AMS1 base
address has to be added to the bit pattern of the lower 25 address bits (23 bits from our example,
extended with two LSBs as explained above).

3. All the memory strobes originally issued by the processor are active-low. The strobes are
converted to active-high inside the FPGA. We use the active-high convention in the FPGA
designs because several library components expect such active-high signals.

We will now provide the resulting addresses that the Blackfin processor will issue to access the FPGA
registers connected to the address decoder. The reader should double check that his/her address
calculations yield the same results.

0x2400 0000 unused

0x2400 0004 1 st register

0x2400 0008 2 nd register

0x2400 000c 3 rd register

0x2400 0010 4 th register

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 11

10 Making the components visible throughout the project

The two types of registers shown earlier are examples of components that you can use throughout your
projects. There are three important things to keep in mind.

1. The component can exist in more than one copy in direct analogy with hardware components.

2. Each time you instantiate the component, you are creating a separate hardware copy of it.
Components are built from hardware elements such as gates, flip-flops, etc. These elements are
taken from the enormous pool provided by the FPGA fabric and assembled into a local instance
of the component that you are instantiating.

3. Unlike electronics bought in a store, the VHDL components do not have to be identical. If the
component was parametrized with GENERIC statements, then you can change the parameters
each time the component is instantiated. In such a way you can create several registers of
different bit widths, for instance.

We will now discuss how to make the best use of the VHDL component files that we presented earlier.
First of all, the component instance must match the PORT declaration in the component source file. In
principle, it should be sufficient to declare the PORT twice: once in the prototype file, and the second
time when instantiating the component. However, the VHDL committee decided otherwise. They
decided that the PORT declaration has to be repeated one more time before the component is
instantiated. It is a bit annoying. This (mis)feature of the VHDL can be worked around as follows. We
collect these redundant component declarations into a PACKAGE that is used in all our files. The
package makes the component declarations visible throughout the entire project.

-- BlackVME_types.vhd. Package collects all our de clarations.
-- (C) Wojtek Skulski 2011-2012.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
PACKAGE BlackVME_types IS

COMPONENT CTRL_reg_CPU_writes -- component #1
GENERIC (regWdt : INTEGER := 16);
PORT (
CLK : in STD_LOGIC;
CS : in STD_LOGIC;
WR : in STD_LOGIC;
RD : in STD_LOGIC;
IOBUS : inout STD_LOGIC_VECTOR (regWdt-1 downto 0);
regout : out STD_LOGIC_VECTOR (regWdt-1 downto 0)); - - output

END COMPONENT;

COMPONENT CTRL_reg_CPU_reads -- component #2
GENERIC (regWdt : INTEGER := 16);
PORT (
CLK : in STD_LOGIC;
CS : in STD_LOGIC;
RD : in STD_LOGIC;
IOBUS : inout STD_LOGIC_VECTOR (regWdt-1 downto 0);
fabric : in STD_LOGIC_VECTOR (regWdt-1 downto 0)); -- input

END COMPONENT;
END BlackVME_types; -- end of the file

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 12

The PACKAGE declaration is similar to the C language header files that establish “prototypes” of C
functions. Just like the header files, VHDL packages are used throughout the project. The VHDL file
that is going to make use of the components will start as follows.

1. library IEEE;
2. use IEEE.STD_LOGIC_1164.ALL; -- basic VHDL
3. -- Our own types, constants, and components in fi le BlackVME_types.vhd
4. use work.BlackVME_types.all;

The package declarations are compiled into a standard workhorse library named work during project
compilation. The library work is automatically included by all files in the project. It does not need to be
mentioned with the library clause. It is sufficient to use our package in line 4. From then on all the
components collected in the package are known to the project.

11 Making use of the register component

Each time you instantiate the component, you are creating a separate hardware copy of it. Just like any
other electronic hardware, the component instance must be connected to some physical wires. The
wires are called “signals” in VHDL. The following code snippet is instantiating a register that allows
the Blackfin processor to toggle several control bits inside the FPGA. This snippet should be put in the
architecture implementation of the main project file.

1. -- Control register BF --> FPGA
2. BFcontrol: CTRL_reg_CPU_writes -- BF control ov er FPGA
3. GENERIC MAP (regWdt => 16)
4. PORT MAP (
5. CLK => BF_CLK,
6. CS => RegSelect (0),
7. WR => BF_WRENA1,
8. RD => BF_rena1,
9. IOBUS => BF_DATA (15 downto 0),
10. regout => BF_ctrl_Reg (15 downto 0));

Apparently the VHDL committee was very fond of the arrows => and <=. In this code => means
“connect”. The inputs of the register are connected to the Blackfin memory signals. The chip select CS
is tied to the address decoder shown earlier. The output is wired to the control bits BF_ctrl_Reg . These
bits turn ON and OFF certain firmware features. For completeness we show how the Blackfin memory
strobes are conditioned before being wired to the register. The signals marked with “_b” are active-low
signals from the processor. They are converted to active-high signals before being used in the FPGA.

1. -- Convert active-low signals from Blackfin t o active-high

2. BF_AMS1 <= NOT BF_AMS1_b; -- AMS1 memory space

3. BF_WR <= NOT BF_AWE_b;

4. BF_RD <= NOT BF_ARE_b;

5. BF_rena1 <= BF_AMS1 AND BF_RD AND (not BF_WR);

6. BF_WRENA1 <= BF_AMS1 AND BF_WR AND (not BF_RD) ;

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 13

12 Utilizing the dual-port memory blocks

The on-board FPGA contains 603 kilobytes of dual-port block memory (BRAM) partitioned into as
many as 268 memory blocks, 18 kilobits each. Making effective use of the BRAM is tremendously
important in many applications. There are two ways of achieving this goal.

1. The blocks can be instantiated “by hand” in the way described in the previous section. One
needs to use the library named UNISIM that is supplied by Xilinx. Memory components are
declared in that library. Using the memory components is described in Spartan-6 Libraries
Guide available from ISE Help. One should read the pages titled BRAM in Chapter 2.

2. The BRAM can be configured with Core Generator that is a part of Xilinx ISE. Core Generator
will customize many options that are available in BRAM components, as well as provide a
netlist file that tiles several BRAM's together into a composite block of the size and aspect ratio
that is needed.

We recommend using the Core Generator because manual instantiation is tedious. Extensive help is
available from within the Core Generator. The Generator will provide a set of files as well as a
comprehensive Data Sheet that explains all the relevant details. We will not attempt to duplicate this
information in this manual. We only point out that the Core Generator will wrap the BRAM blocks into
a component whose declaration should be placed into the package BlackVME_types as follows.

-- EXAMPLE: Dual port "simple memory" generated wit h Core Generator
-- Port A (BF write) N/2 cells each 32 bit wide
-- Port B (FPGA read) N cells each 16 bit wide
-- This component is in three files named "EXAMPLE_ BRAM_8k"
-- .ngc, .xco, .vho. The .vho contains instructions .
-- FPGA side: 8k 16-bit samples. BF side: 4k 32-bi te words.

-- BF: Port A addr (11 : 0), but BF uses address (13 : 2)
-- FPGA: Port B addr (12 : 0)

COMPONENT EXAMPLE_BRAM_8k
PORT (
-- port A; BF side
clka : IN std_logic;
ena : IN std_logic; -- read enable
wea : IN std_logic_VECTOR(0 downto 0); -- write en able
addra : IN std_logic_VECTOR(11 downto 0); -- (13 : 2) = 12 bits
dina : IN std_logic_VECTOR(31 downto 0); -- Blackfi n writes directly to this
douta : OUT std_logic_VECTOR(31 downto 0); -- connec t this to a multiplexer
-- port B; FPGA side
clkb : IN std_logic;
enb : IN std_logic; -- read enable
web : IN std_logic_VECTOR(0 downto 0); -- write ena ble
addrb : IN std_logic_VECTOR(12 downto 0); -- (12 : 0) = 13 bits
dinb : IN std_logic_VECTOR(15 downto 0);
doutb : OUT std_logic_VECTOR(15 downto 0));

END COMPONENT;

This particular component has been tailored to our needs indicated with comments. We will refrain
from explaining the details because your requirements may be different. The memory component
named EXAMPLE_BRAM_8k can be instantiated in the main VHDL file according to the rules
explained in the earlier sections.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 14

13 Addressing blocks of on-chip memory

The dual-port BRAM is addressed from two sides. The FPGA side can use a simple counter to step
through the memory range. The counter wraps around when all its bits are '1'. Waveform acquisition
can be restarted from the start of the memory block. Collecting the samples is performed when enabled,
otherwise the memory counter is not running. Lines 1 through 4 should be put in the declaration
section. The rest of the code should be put into the architecture implementation.

1. library IEEE;
2. use IEEE.STD_LOGIC_1164.ALL; -- basic VHDL
3. use IEEE.STD_LOGIC_ARITH.ALL; -- basic arith metics on std vectors
4. SIGNAL MemAddr_ctr: STD_LOGIC_VECTOR (Nbit-1 dow nto 0); -- declaration
5.
6. PROCESS (CLK, restart, enable) BEGIN
7. IF rising_edge (CLK) THEN
8. IF restart = '1' THEN
9. MemAddr_ctr <= (others => '0');
10. ELSIF enable = '1' THEN
11. MemAddr_ctr <= MemAddr_ctr + 1; -- this co unter wraps around
12. END IF;
13. END IF; -- CLK
14. END PROCESS;

The Blackfin side is a bit more complicated. The Blackfin address is split into two parts. The lower-
order bits (13 downto 2) are tied to the BRAM address. These bits do not include the two lowest order
bits 0 and 1 because the Blackfin address jumps by four, when the processor is working in the 32-bit
mode. The upper part (25 downto 15) of the Blackfin address is used to select among multiple BRAM
blocks, using a variant of the address decoder shown below.

-- At BF side, 4k-word needs 12-bit address, 13:2. The lowest select bit is 14.

MemSelect <= -- result addr

"000 1" WHEN BF_AMS0& BF_ADDR(25 downto 14)="100000000000 0" ELSE -- 0x20000000

"00 10" WHEN BF_AMS0& BF_ADDR(25 downto 14)="10000010000 00" ELSE -- 0x20100000

"0 100" WHEN BF_AMS0& BF_ADDR(25 downto 14)="1000010000 000" ELSE -- 0x20200000

" 1000" WHEN BF_AMS0& BF_ADDR(25 downto 14)="100001100 0000" ELSE -- 0x20300000

(others=>'0');

We used a notation trick in the above example. The AMS0 select was prepended to the address bits
using the VHDL operator & that concatenates bits together. The leftmost “1” in the address bit patterns
corresponds to the AMS0 bit. In such a way we did not have to write a separate line of the VHDL code
that would AND the select vector with the AMS0 bit. The ANDing was implicitly coded into the
address bit pattern used in the decoder. This kind of a notation shortcut is very handy, but it may be a
bit confusing at the first sight. Nevertheless, it belongs to the war chest of VHDL programming.

The MemSelect bit is then tied to the respective “enable” bit of the Blackfin side of the BRAM. This
bit will place the BRAM at the address range indicated in the comment. For example, if we use the 0-th
bit, the memory will be mapped starting at address 0x20000000 in hex. The reader should verify that
the Blackfin addresses are indeed as indicated in the comments. Please read in the BF561 data sheet
what addresses correspond to which AMSx space when you perform this exercise.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 15

14 Multiplexing BRAM memories for Blackfin readout

Somewhat surprisingly, the outputs of the dual-port BRAM are not equipped with tristate buffers. As a
consequence, the BRAM outputs cannot be directly wired to the readout bus because they would create
electrical contention. Previously we did not encounter the contention because register outputs were
equipped with the tristates. Now we have to deal with the problem.

The BRAM outputs have to be multiplexed. We will compare two different ways to infer the
multiplexer. The first example is provided by ISE Synthesis Constructs. It has been edited for clarity.

--- Multiplexer
--- Code pattern from ISE Language Templates -> Syn thesis Constructs

1. process (select,input1,input2,input3,input4)
2. begin
3. case select is
4. when "00" => output <= input1;
5. when "01" => output <= input2;
6. when "10" => output <= input3;
7. when "11" => output <= input4;
8. when others => output <= input1; -- redundan t?
9. end case;

10. end process;

The multiplexer circuit was coded as a process that does not reference the clock. Consequently, the
combinatorial circuitry will be inferred by the compiler. Here we see that the process does not
necessarily imply that the circuit is clocked. If there is no reference to the clock, then the circuit will be
combinatorial. (As a reminder, the clock is implied by a rising_edge , falling_edge , or a construct
signal'event and signal='1' .) Line 8 covers non-boolean signal values such as 'X' or 'Z'.

We now present another version of a multiplexer that makes the reference to the Blackfin AMS space.

1. TYPE BF_MemBus_t IS ARRAY (3 downto 0) OF STD_L OGIC_VECTOR (31 DOWNTO 0);
2.
3. -- array of BF memory outputs, 32 bits each.
4. SIGNAL BF_MemBus : BF_MemBus_t;
5.
6. MemorySpace0 <=
7. BF_MemBus (0) WHEN select="00" ELSE
8. BF_MemBus (1) WHEN select="01" ELSE
9. BF_MemBus (2) WHEN select="10" ELSE
10. BF_MemBus (3) WHEN select="11" ELSE
11. (others=>'Z');
12.
13. BF_DATA <= MemorySpace0 WHEN BF_rena0 = '1' ELS E (others=>'Z');

The type declaration from line 1 should be put into the central repository BlackVME_types. The output
MemorySpace0 is switched among bit vectors BF_MemBus according to the selection bit pattern. In line
13 the output from the multiplexer is wired to the Blackfin data bus through a tristate buffer controlled
by the read strobe. One should note that in order to complete the circuit the individual MemBus vectors
are connected to the ports douta of the BRAM memories shown earlier. The other ports dina can be
wired directly to the Blackfin BF_DATA because being inputs they cannot cause a contention.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 16

15 Synchronizing an external signal to the FPGA clock

We are now turning our attention to bit processing. We start with a very simple example. Let us make
sure that an external signal starts on an FPGA clock boundary. This example can be applied to the front
panel NIM inputs. But first let's ask why do we care?

The answer is that an unsynchronized signal is potentially a very bad thing. Let's imagine that we use
an external NIM pulse to zero a time stamping register. OK, so we connect it to a reset of a free-
running counter similar to the one shown in Section 13. We will find out that we indeed reset the
counter most of the time. But sometimes we do not. Sometimes the counter starts from a seemingly
random bit pattern. What is going on?

The answer is “metastability”. Type this word to Google and several articles will pop up, documenting
the importance of the problem. The metastability occurs when the signal edge hits the flip-flop at just
the wrong moment, violating the timing requirements. The just wrong is guaranteed to happen if we
repeatedly use a signal whose edge is unrelated to the clock. So we need to make sure that before using
the external NIM pulse inside the FPGA, we force its edge to be synchronized to the FPGA clock.

1. -- ISE VHDL templates --> Synthesis Constructs - -> Misc --> Debounce
2. --**Insert the following between the 'architectu re' and 'begin' keywords**
3. signal Q1, Q2, Q3 : std_logic;
4.
5. --**Insert the following after the 'begin' keywo rd**
6. process(CLK) begin
7. if rising_edge(CLK) then
8. Q1 <= external; -- time = 1. Can be meta stable.
9. Q2 <= Q1; -- time = 2. Good to use.
10. Q3 <= Q2; -- time = 3. Perfect to use.
11. end if;
12. end process;

The code describes a clocked circuit built with flip-flops. That's what we need. The three signals Q1,
Q2, and Q3 are copies of the external , but delayed by one, two, and three clock cycles. Strictly
speaking, Q1 is delayed by anything between zero and the full clock because the external can hit the
flip-flop any time within the clock cycle. The Q2 and Q3 are in the fixed time relationship to Q1. The
Q2 should be good enough. The Q3 is guaranteed to be perfect for the age of the Universe.

There can be two questions concerning this code snippet. (a) How does it follow that Q1 is a delayed
copy of external , and so on with Q2 and Q3? (b) How does it work anyway?

The answers: (a) Don't even ask. This kind of code is an idiom. If there is a rising edge, then there are
flip-flops. If there is a string of assignments, then flip-flops are strung one after another. That's what we
need. (b) The circuit works through black magic based on probabilities. The topic is not an easy one.

16 Delaying a signal by a fixed number of clock cycles

The same circuit can be used to delay any bit by a fixed number of clocks, three in this case. Just
replace the external with any_signal internal to the FPGA. The any_signal must belong to the
same clock domain. If it does not then we are in square one. A signal belonging to another clock
domain is an external signal from the point of view of the target domain.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 17

17 Generating a short pulse lasting one clock cycle

The same circuit can be used to manufacture a pulse lasting one clock cycle. Such a pulse can be useful
because it corresponds to a leading edge. In other words, you have a long pulse of unknown duration,
perhaps milliseconds. But you need a short pulse to reset your counter and then start counting right
away without waiting till the long pulse goes away. Here is the solution. Apply the following to the Q
signals from the previous section on synchronizing.

pulse1 <= Q1 and (not Q2); -- use with internal sign al

pulse2 <= Q2 and (not Q3); -- use with external sign al

One of these lines should be applied to the Q signals from the previous circuit. Version 1 produces the
pulse one clock earlier than version 2, but it is susceptible to metastability. Version 2 should be used
with external signals. There are some caveats worth putting in writing.

1. Somewhat surprisingly, this circuit seems to annihilate a single-clock pulse applied to its input.
One can say that applying the leading-edge detection twice makes no sense, so maybe there is
no problem. Nevertheless, annihilating single-clock inputs was not expected. Beware.

2. A similar circuit described in the book by Chu on pages 114, 117 did not work well. Most often
it produced double-clock output, but sometimes it was a single clock. The behavior was bizarre.
We recommend our solution described in this section because it has been tested in Spartan-6.

18 Delaying a one-bit signal by a variable number of clock cycles

Now we are going to do some heavy lifting. We want to delay a signal by a variable number of clock
cycles, from 1 to 32 clocks. The signal will be one bit wide (for example, the NIM input after it was
synchronized). We want that Blackfin controls the delay.

1. --**Insert the following at the beginning of th e file
2. library unisim; -- Xilinx library components
3. use unisim.vcomponents.all;
4.
5. --**Insert the following between the 'architect ure' and 'begin'
6. signal prgm : STD_LOGIC_VECTOR (4 downto 0);
7.
8. --**Insert the following after the 'begin' keyw ord**
9. shift_register_32_taps : SRLC32E
10. generic map (INIT => X"00000000")
11. port map (
12. CLK => CLK, -- Clock input
13. D => din, -- shift register bit input
14. Q31 => open, -- SRL cascade output (connect o nly to next SRL)
15. A => prgm, -- 5-bit shift depth static sele ct input
16. CE => '1', -- Clock enable input, always en abled
17. Q => dout -- output bit from shift registe r
18.);

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 18

We used a shift register SRL32 that Xilinx built into Spartan-6. The number of delay “taps” can be
controlled with a register of the type CTRL_reg_CPU_writes that was described earlier. The register
should be instantiated with 5 bits, because SRL32 needs this number of control bits. The register will
be connected to the bit vector prgm , which in turn will be wired to the shift register control. The
register will be memory-mapped on the Blackfin bus in the way elaborated earlier. The chain of
connections is sketched below. Writing down the VHDL statements is left as an exercise for the reader.

Blackfin bus → CTRL_reg_CPU_writes → prgm → shift_register_32_taps

In this way we demonstrated how the register component described earlier can be utilized to implement
functionality that is both needed and not easy to implement without a war chest of proven components.

19 Delaying a multi-bit signal by a variable number of clock cycles

Now we want to delay a multi-bit signal by a variable number of clock cycles, from 1 to 32 clocks. The
signal will be of any width. For example, we can delay a stream of ADC samples in order to match a
time-of-flight difference among detector subsystems. We want that Blackfin controls the delay.

-- Delay_Line_L32.vhd. (C) Wojtek Skulski 2003-2012 .
-- Input: prgm 0..31 means delay by 1..32 clocks
library IEEE;
use IEEE.std_logic_1164.all;
library unisim; -- Xilinx librar y components
use unisim.vcomponents.all;

ENTITY Delay_Line_L32 IS
 GENERIC (PipeWdt: INTEGER := 14); -- default bit width of the stream
 PORT (
 CLK : in STD_LOGIC;
 CE : in STD_LOGIC; -- clock enable
 prgm : in STD_LOGIC_VECTOR (4 downto 0); -- d elay 0..31, input
 din : in STD_LOGIC_VECTOR (PipeWdt-1 downto 0);
 dout : out STD_LOGIC_VECTOR (PipeWdt-1 downto 0)
);
end Delay_Line_L32;

ARCHITECTURE SRL32 OF Delay_Line_L32 IS BEGIN

pipe: FOR i IN 0 TO PipeWdt-1 GENERATE

slice : SRLC32E
GENERIC MAP (INIT => X"00000000")
PORT MAP (

CLK => CLK, -- Clock input
D => din(i), -- SRL data input
Q31 => open, -- SRL cascade output pin (connec t only to next SRL)
A => prgm, -- 5-bit shift depth select input
CE => CE, -- Clock enable can freeze the pi pe
Q => dout(i)); -- SRL data output

END GENERATE pipe;
END SRL32; -- end of the component file

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 19

The component from the previous page should be declared in the central repository BlackVME_types.
It can be instantiated in the design, connected to the register CTRL_reg_CPU_writes , and controlled by
the Blackfin. One can change on the fly by how many clock ticks the data stream will be delayed, from
1 to 32 clock ticks. The chain of connections is similar to the previous example.

Blackfin bus → CTRL_reg_CPU_writes → prgm → Delay_Line_L32

The clock enable CE is a handy method of temporarily freezing the shift registers in their current state.
It can be used to capture a stretch of the data stream in the pipe. The captured samples can be then
clocked one by one from the pipe by pulsing the CE. Each time the CE is pulsed HIGH for the duration
of one clock, one sample will be clocked out from the end of the pipe, and one sample will be clocked
into it at the beginning. (Use the previous one-shot to make single-clock CE pulses.) One should note
that the pipe cannot be accessed in parallel. The only method of retrieving the samples is to clock them
out from the end of the pipe.

We will now present a code snippet that implements a similar functionality, but this time the compiler
is allowed to infer the circuit.

1. -- Language templates --> Synthesis constructs --> Shift registers.
2.
3. TYPE Tpipe IS ARRAY(PipeLen-1 downto 0) OF
4. STD_LOGIC_VECTOR (PipeWdt-1 downto 0);

5. SIGNAL pipe: Tpipe;

6. -- The "dynamic shift register" should be infer red by synthesis.
7. process (CLK) begin
8. if rising_edge (CLK) then
9. pipe <= pipe(PipeLen-2 DOWNTO 0) & din;
10. end if;
11. end process;
12. dout <= pipe(conv_integer(prgm)); -- select the dynamic length

The difference between this snippet and the previous one is three fold. First, there is no clock enable
CE in the snippet. Adding the CE is left as an exercise. Second, the length of the pipe is not declared
explicitly. The code is parametrized with the generic named PipeLen that can be any number. The
compiler can infer pipes of any length and implement them any way it chooses. Most likely, the
compiler will string together as many SRL16 or SRL32 blocks as needed and it will connect the prgm

bits to implement the requested functionality. It sounds more convenient than the component shown
earlier where the maximum delay was imposed by using the library component SRL32 whose
maximum capacity is rigidly defined by its internal structure.

The last difference between the previous code and this one is that we can be reasonably certain what
the previous code was doing by just looking at it and reading the SRL32 description in the Spartan-6
Libraries Guide. The margin for mistakes was reasonably narrow in the former case. In the latter case
we think that we understand the function of the circuit based on the behavioral VHDL code. But there
can be a difference between what we think and what the compiler is thinking, even though the code
snippet was copied from ISE Help. It happens now and then that the code snippets do not yield the
desired circuitry. After all, the Help system was composed by humans who occasionally make their
mistakes. The programmer must be prepared for testing the behavioral code snippets piece by piece.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 20

20 Driving the clock off-chip

The next two sections are based on our experience with sending a data stream from the FPGA to a
device that required double data rate (DDR). The outlined solutions are applicable to about 100 MHz,
that is 100 megabits-per-second (mbps) per IO pin for single data rate (SDR) and 200 mbps for DDR.

DDR transmission is a common technique where data bits are latched on both rising and falling clock
edges. It is commonly used together with source-synchronous transmission (SST) where both the data
and the associated clock are sent together from the source to the destination along a multiwire cable or
a bunch of printed circuit board traces with closely matched lengths. The idea is that as the clock and
the data travel together, their phase relationship is not distorted and the clock can be used to latch the
data at the destination. The clock that is transmitted to another device is called a forwarded clock.

One should note that the received clock is defining its own clock domain at the destination, even in
those cases where it toggles at precisely the same frequency as some other clock in the destination chip.
The captured bits must be transferred to the other clock domains with proper techniques described in
Xilinx application notes. The reader should search the following web page for the word capture or a
phrase data capture. The relevant information can be found in XAPP225, XAPP709, XAPP802,
XAPP855, XAPP860, and others. The application notes can be downloaded from the following page:

http://www.xilinx.com/support/documentation/application_notes.htm

The referenced information is crucial in order to design reliable data links between two FPGAs. The
problem is at the receiving end where the received clock has no fixed relationship to the on-chip clock,
even if both toggle at the same frequency. The transmitting end has no such problem because the data
and the forwarded clock are in phase with the on-chip clock, which is in fact identical with the
forwarded clock.

The above considerations will be important if the reader is planning to send the data from one FPGA to
another one at a high data rate, or along a cable of an appreciable length. The problem becomes less
severe in case of the on-board FIFO connection between the Spartan-6 FPGA and the Blackfin
processor, especially when the FPGA is the transmitter and Blackfin is the receiver of the FIFO data.
The Blackfin end of the FIFO is named a Parallel Peripheral Interface (PPI). Its timing is described on
page 28 of the BF561 Data Sheet revision D. There are three important observations concerning the
Blackfin PPI.

1. The PPI uses a single data rate (SDR) rather than DDR. The data bits are latched on the rising
edge of the forwarded clock. The falling edge is not utilized.

2. The PPI clock is an input-only pin at the Blackfin end. This is fine when Blackfin is receiving
the data. It may lead to some timing complications if Blackfin is sending the data, because the
data bits and the clock will then travel in the opposite directions.

3. The bit capture was implemented by the designers of Blackfin silicon. We do not need to bother
how the bits are captured at the Blackfin end.

4. The PPI is running at ½ of the Blackfin peripheral clock that is fsclk = 120 MHz on the
BlackVME board. It means that PPI is running at 60 MHz, that is a period of 16.7 ns, and half
period of 8.3 ns. Establishing a proper timing margin within such a wide window should not be
too problematic. We only need to supply the bits with proper bit-to-clock alignment described
on page 28 of the BF561 Data Sheet.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 21

Now we will tackle the first part of the topic. We want to drive the clock off-chip in order to generate
the forwarded clock either for the Blackfin, or for some other destination chip. Lets try this:

output_pin <= CLK;

The assignment is perfectly legal and it worked in our previous design based on Spartan3A-DSP.
Unfortunately, upon seeing this assignment the ISE compiler violently complained about illegal clock
forwarding techniques in Spartan-6. We were advised to read a paragraph from the Synthesis
Constructs → Coding Examples → Misc → Output Clock Forwarding Using DDR → Info (Clock
Forwarding). A part of the paragraph is reproduced below.

The basic technique is to supply the input clock to an output DDR register where one
value is tied to a logic 0 and the other is tied to a logic 1. A clock can be made with
the same phase relationship (plus the added offset delay) or 180 degrees out of phase by
changing the 1 and 0 values to the inputs to the DD R register.

An example code for Spartan-6 was also supplied in the help. We worked out the example as follows.

-- In Spartan6 we cannot simply drive the IOB with a clock signal.
-- We rather have to use "clock forwarding techniqu es" with ODDR2 primitive.
-- The register output can be routed only to ILOGIC , IODELAY, or IOB.
 ODDR2_clock : ODDR2
 GENERIC MAP(
 DDR_ALIGNMENT => "NONE", -- Output alignment to "NONE", "C0", "C1"
 INIT => '0', -- Initial state of the Q output to '0' or '1'
 SRTYPE => "ASYNC") -- Specifies "SYNC" or "ASYNC " set/reset
 port map (
 Q => CLK_RAW, -- output data (clock in this case) to output pad
 C0 => CLK180, -- clock0 input to be forwarded
 C1 => CLK, -- clock1 input inverted
 CE => HIGH, -- clock enable input
 D0 => HIGH, -- data input associated with Cloc k0
 D1 => LOW, -- data input associated with Clock 1
 R => LOW, -- reset input
 S => LOW); -- set input

According to the quoted paragraph, plus other recommended reading (Libraries Guide, the page about
ODDR2) the two signals CLK and CLK180 are the two versions of the same clock out of phase by 180
degrees. We generated the inverted clock with brute force:

CLK180 <= NOT CLK;

This assignment was expected to bring another wave of complaints, but surprisingly there were none.
Should the compiler have complained, we would have used the Digital Clock Manager (DCM) to
create the inverted clock.

So how does the circuit work in the first place? The idea is simple: there are two clocks C0 and C1.
One is an inverted copy of the other. Both clocks are using their leading edges to send out two constant
signals, one HIGH and one LOW. The constants are connected to D0 and D1, that are associated with
the two clocks. The D0 is wired to C0, the D1 is wired to C1. On each leading edge the associated
signal is sent out. That's how the DDR register is doing its job. (Read the Libraries Guide.)

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 22

The remaining issue is how to forward an SDR clock if one is planning to drive the Blackfin's PPI?
Actually, there is no such thing as the SDR clock. Only the data can be either DDR or SDR in the
relation to the clock. Clock forwarding is handled the same way in both cases.

In our application we faced an additional difficulty, because the receiver expected the clock edge to fall
in the middle of the bit “data eye”. It means that the clock and the data should be 90o out of phase,
while both were precisely in phase on-chip. We had to shift the output phase of the forwarded clock to
give it just the right timing margin relative to the data bits. (If you are planning to drive the Blackfin
PPI then look at page 28 of BF561 Data Sheet.) Delaying the clock can be done with the IODELAY2
that is built into every Spartan-6 pin. The relevant code example can be found onscreen in Device
Primitive Instantiation → Spartan-6 → I/O Components → Input. For explanations please read about
IODELAY2 in the Libraries Guide.

-- It is not clear from documentation what a tap de lay really is.
-- Use the scope to examine bit-to-clock timing.
 IODELAY2_clock : IODELAY2
 GENERIC MAP (

COUNTER_WRAPAROUND=> "WRAPAROUND", -- STAY_AT_LIMIT or WRAPAROUND
DATA_RATE => "SDR", -- SDR or DDR
DELAY_SRC => "ODATAIN", -- IO, ODATAIN or IDATAIN
IDELAY_MODE => "NORMAL", -- Unsupported (NORMAL or PC I)
IDELAY_TYPE => " FIXED", -- FIXED, DEFAULT, VARIABLE_FROM_ZERO,...
IDELAY_VALUE => 0, -- Input Delay (0-255)
IDELAY2_VALUE => 0, -- Input Delay (0-255); only for PCI
ODELAY_VALUE => XXX, -- Output delay (0-255). Use proper value
SERDES_MODE => "NONE", -- NONE, MASTER or SLAVE
SIM_TAPDELAY_VALUE => 45) -- Used for simulation in ps

 PORT MAP (-- all ports are 1-bit. FIXED mode does not use RST or clocks.
ODATAIN => CLK_RAW, -- in; Data input from OLOGIC or OSERDES.
IDATAIN => LOW, -- in; Data input from IOB
T => LOW, -- in; Tristate input. LOW=output, HIGH=in put.
CLK => LOW, -- in; Clock input from the fabric
DATAOUT => open, -- out; Delayed output to ISERDES/In put reg
DATAOUT2 => open, -- out; Delayed output to general FPGA fabric
DOUT => FORWARDED_CLK, -- out; Delayed Data Output to output pin
TOUT => open, -- out; Delayed Tristate Out
IOCLK0 => LOW, -- in; Primary I/O Clock input
IOCLK1 => LOW, -- in; Secondary I/O Clock input
RST => LOW, -- in; Reset to zero or 1/2 of total per iod
CE => LOW, -- in; Enable increment/decrement
INC => LOW, -- in; Increment / Decrement input
CAL => LOW, -- in; Initiate calibration input
BUSY => open -- out; Busy after calibration CAL

); -- end of IODELAY2

OUT_PIN <= FORWARDED_CLK; -- OUT_PIN is routed to the receiver

The IODELAY2 is inserted between the ODDR2 from the previous page and the output pin. In our case
we wanted a fixed output delay for the signal. The delay is thus FIXED, what automatically renders
most options irrelevant. The number of delay taps needs to be set to XXX after you look at the scope.
The not-so-funny feature of Spartan-6 is that the value of the delay tap is not guaranteed by Xilinx, and

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 23

therefore one has to use the scope to measure the actual delay. Try 50 picoseconds per tap for a good
start and use the scope to make sure. It will delay the clock signal by XXX*50 ps, if the delay tap is 50
picoseconds. But this value is only the first guess. You will need to use the scope.

The very fact of inserting the IODELAY2 is adding about 2.5 ns to the signal path (check Spartan-6 Data
Sheet for exact value). It means that a rough alignment of the clock to the bit “data eye” may be
achieved by just inserting the IODELAY2 into the clock path without any further work, if the IODELAY2

blocks are not inserted into the bit paths.

21 Driving the data bits off-chip

We will now discuss how to drive the data using the SDR or DDR. Concerning the Single Data Rate,
there are two solutions. The first solution is simple. Just write

output_pin <= data_bit;

We recommend this solution because of its simplicity. Note that the IODELAY2 is omitted in the data
path, and therefore one can easily create a 2.5 ns clock-to-bit offset by inserting the IODELAY2 into
the clock path, while the data bits are routed directly to the output pins. Such an offset may be required
by the receiver (check the data sheet).

Another solution is to use the ODDR2 as explained in the previous section, but make the two DDR data
streams identical. The falling edge data will be the same as the rising edge data, what effectively means
there will be no bit transition on the falling clock edge. And this is precisely what SDR means.

-- Double data rate register used for SDR transmiss ion.
ODDR2_bit : ODDR2
 GENERIC MAP(
 DDR_ALIGNMENT => "NONE", -- Output alignment to "NONE", "C0", "C1"
 INIT => '0', -- Initial state of the Q output to '0' or '1'
 SRTYPE => "ASYNC") -- Specifies "SYNC" or "ASYNC " set/reset
 port map (
 Q => output_signal, -- connect to either output pad or to IODELAY2
 C0 => CLK180, -- clock0 input associated with D0
 C1 => CLK, -- clock1 input associated with D1
 D0 => same_data, -- data input associated with Clock0
 D1 => same_data, -- data input associated with Clock1
 CE => HIGH, -- clock enable input
 R => LOW, -- reset input
 S => LOW -- set input
);

Now we turn our attention to the DDR data stream. Actually, it is very simple. Replace the “same data”
in the previous example with data_1 and data_2 and you have created a DDR data stream, where
data_1 is coded on one edge, and data_2 on the opposite edge of the clock.

The solutions outlined in this section are good to about 100 MHz, that is 100 mbps per IO pin for SDR
and 200 mbps for DDR. The data rate can be increased about 5x using the SERDES blocks that are
built into every IO pin. The reader is advised to study Xilinx application notes concerning SERDES.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 24

22 Conclusion and outlook

We walked the reader among several examples of VHDL programs relevant to the BlackVME projects.
We are aware that the examples barely scratch the surface. There are whole areas not covered with our
discussion, such as high-speed signal transmission over LVDS links, or digital signal processing. It was
not possible to dive into these topics in an introductory tutorial whose scope and size has to stay
limited. Nevertheless, we hope that even the limited material presented in this tutorial will be useful for
jump starting your BlackVME work.

In this concluding section we want to collect some observations and recommendations not mentioned
elsewhere. We suspect that the reader may feel a bit overwhelmed and intimidated after the visit to the
whole new world of FPGA development. We want to attest that it is not as difficult as it might seem.
There are a few principles to keep in mind.

The FPGA work has to be much more rigidly structured than it is customary with computer
programming. Let's face the reality. In principle, computer programs should be neatly written and well
documented. However, as most researchers probably noticed, it is rarely the case. The computer code is
usually quickly cobbled together under the pressure of time. Any kind of crappy spaghetti code that is
doing the work is acceptable in research-grade computer code. The kind of programming habits, that
work for computers, unfortunately will spell disaster in FPGA programming.

The reason behind the difference between the computer and the FPGA programs is the way the FPGA
compilers work. As we repeatedly stressed in the tutorial, FPGA compilers do not translate the
programs into the FPGA code line-by-line. The compilers rather look for patterns and apply a process
called inferring. The programmer is advised to make the compiler's life as easy as possible by using
only the well-defined patterns that the compiler is able to recognize. The spaghetti kind of
programming may confuse the compiler and lead to inferring unintended circuitry. The FPGA netlist
will be produced by the compiler, but the output from such circuits may surprise the developer.

The FPGA program patterns can be put directly into the source file. It is an acceptable practice in small
and medium projects. Larger projects should be divided into a set of components, each one
implemented in its own source file. The component interfaces can be conveniently collected in a
package that we named BlackVME_types in our examples. One can use more than one package, if the
number of components grows beyond what is suitable for a single file.

Testing is tremendously important in FPGA projects. The tests need to be conducted while the project is
developed. An alternative to incremental testing is a test plan executed after the coding is finished. In
any case, significant thought and effort should be devoted to testing the responses of the FPGA circuits.
Testing can be conducted in software simulations of the FPGA designs under the development
environment. All development systems such as ISE provide tools for testing the netlist responses. The
acid test can be conducted only with the actual hardware through looking at the FPGA outputs. LEDs
are tremendously useful, as well as the logic outputs that we provide with the BlackVME board. We
also provided the reconstruction DAC on our ADC card. The waveform reconstruction proved to be a
very useful tool for developing the signal processing algorithms.

As a final remark, SkuTek Instrumentation is offering FPGA development services to our BlackVME
customers. Using our services may be the most cost-effective method to implement your application in
the FPGA chip.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 25

23 Important Notice

SkuTek Instrumentation reserves the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any
product or service without notice. SkuTek does not warrant or represent that any license, either express
or implied, is granted under any SkuTek patent right, copyright, or other SkuTek intellectual property
right relating to any combination, machine, or process in which SkuTek products or services are used.
Information published by SkuTek regarding third-party products or services does not constitute a
license from SkuTek to use such products or services or a warranty or endorsement thereof. SkuTek
products are not authorized for use in safety-critical applications (such as life support) where a failure
of the SkuTek product would reasonably be expected to cause severe personal injury or death. Buyers
represent that they have all necessary expertise in the safety and regulatory ramifications of their
applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and
safety-related requirements concerning their products or applications and any use of SkuTek products
in such safety-critical applications, notwithstanding any applications-related information or support that
may be provided by SkuTek. Further, Buyers must fully indemnify SkuTek and its representatives
against any damages arising out of the use of SkuTek products in such safety-critical applications.
SkuTek products are neither designed nor intended for use in military/aerospace applications or
environments. SkuTek products are neither designed nor intended for use in automotive applications or
environments.

Linux software programs distributed by SkuTek for our Linux-based products are open-source
software; you can redistribute it and/or modify these programs under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. The software programs are distributed in the hope that they will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with our Linux programs;
if not, see the files named COPYING, or write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA.

You can incorporate FPGA firmware source code examples developed and distributed by SkuTek in
your projects either in their original form or modified to suit your needs. The examples remain our
intellectual property. All rights are reserved by SkuTek to the extent permitted by law. Please retain our
copyright statement in all copies that you make. The examples are distributed in the hope that they will
be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Source code examples developed by third parties remain the property of the respective owners.

Chapter F1: Introduction to BlackVME FPGA development. (CONFIDENTIAL) 05/03/12 Page 26

