BlackVME Developer's Manual
Chapter F1

Introduction to FPGA Development

© 2012 SkuTek Instrumentation

410 Linden Street, Rochester, NY 14620
(585) 256 0842
http://www.skutek.com

Summary This chapter of the BlackVME manual is a gemiieaduction to the art of programming the
field programmable gate array (FPGA) that is presarboard. We will not cover each and every detalil
of the black magic. We will rather walk the reatteough a set of code snippets lifted from our own
work with the intent to provide useful examples.

Table of Contents

1 The objective Of thiS CRAPLEI ... e e eaans 2
2 THe FPGA IITEIAIUIE .o eeeeee ettt e ettt e e e e e e e e e e e s e s s bbbt bbb e e et abb e e e e eeenes 2
3 FPGA architecture and programimMingccocoeeeooeooooieeeeiieiiiiiiia e e e e e e e e e e e eeeaaaeeeeeean e aeenaeeennnns 3
4 Structure Of the FPGA PrOJECE ..o et e e e e eeees 4
5 Two kinds of logic circuits, combinatorial and@kedooueiiiiiiiiiiiii 5
6 Controlling the FPGA WIth @ FEQISIEI ... e eeeeeeeeiiiiiiiiiias e e e e e e e e e e e e e e et eeeeeeeeeeaera e e e e e eaen e eeannns 5
7 Reading from the FPGA devViCe USING @ MEQISLEL ..c...coiiiiiiiiiiiiiiiiiee e e e e e e e e e e e e e 8
8 Dealing With CIOCK QOMAINSciii e e et s e e e e e e e e e e e e e e e e eeseseannnnee s 9
9 USINg @ ProCeSSOr'S DUS AUUIESSottt e e e e e e e e e e et e e e et e eeean s 9
10 Making the components visible throughout thgemtooovvmiiiiiiiiii e, 12
11 Making use of the regiSter COMPONENTe.iieiiiae e e e e eeenas 13
12 Utilizing the dual-port memory BIOCKS ... e 14
13 Addressing blocks of ON-ChiPp MEMOIY ...t 15
14 Multiplexing BRAM memories for Blackfin readouL................ooovviiiiiiiiiiiiieeeee e, 16
15 Synchronizing an external signal to the FPQAICIcooiiiiiiiiieeeee e 17
16 Delaying a signal by a fixed number of CIOCKIESeuiiiiiiiiiiiiiiiii e 17
17 Generating a short pulse lasting 0ne ClOCKECYCL............ouuuuiuiiiiiiiiiiee e 18
18 Delaying a one-bit signal by a variable numifezlock CycClesccoviiiiiiiiiiiiiicceec, 18
19 Delaying a multi-bit signal by a variable numbgclock cyclesccooooiiiiiiiiiicccee . 19
20 Driving the CloCK Off-CRIP ..o e e e e e e e e e aanns 21
21 Driving the data bitS Off-ChiPoooeie e 24
222 ©7e] o Tl (U] (o] g =T To 01U 11 [0 o | QPSPPSR 25

pZ2C T [0] oo =1 1 Ao [= PSPPI 26

1 The objective of this chapter

This chapter of the BlackVME manual is a gentleadtiction to the art of programming the field
programmable gate array (FPGA) that is presentoamds We will not cover each and every detail of
the black art. We will rather walk the reader tlgbw@a set of code snippets lifted from our own work
with the intent to provide useful examples. We glaachieve the following.

* Explain what is the FPGA and what it is not.

* Explain the difference between programming the FRG& programming a processor.
* Advise how to start with FPGA programming and wioagxpect.

* Provide examples of FPGA constructs that we fowseful in our own work.

The chapter was motivated by real life. One ofastomers decided to develop his own FPGA code,
what is not a piece of cake at all. This chaptélrivelp jump start the effort. It will also helphr
BlackVME users developing their own FPGA configioas.

Our company is helping the customers in their FR@@ications in two separate ways.

* We provide FPGA programming services to our custeme

* The FPGA firmware can be developed by the custonier.template for the FPGA firmware
development is available upon request at no cd&.tdmplate consists of the User Constraint
File (UCF) with all the FPGA pins prepopulated e tcorrect locations. The code file written
in the VHDL language consists of the PORT declanstcorresponding to the UCF file. The
body of the VHDL file is empty to allow the devebag to fill it with their own code.

2 The FPGA literature

Extensive literature on FPGA programming is avadald/e recommend the following reading.

1. H.F-W.Sadrozinski, J.W#pplications of FPGA' in Scientific Resealtiook).
V.A.PedroniCircuit Design and Simulation with VHD(book).

K.Skahill, VHDL for Programmable Logi¢book).

P.P.ChuFPGA Prototyping by VHDL Examples: Xilinx Spartave& sion(book).

Xilinx Reference Manuals, available as part @ Xilinx FPGA development software.

Xilinx Application Notes available frorttp://www.xilinx.com/ Some of the notes are
excellent. Xilinx keeps reshuffling their websiteasm amazing rate, and therefore we cannot
provide web pointers that are guaranteed to wank. rEader may try the following:

http://www.Xilinx.com/support/documentation/applice notes.htm

o gk wbd

We recommend the book by Sadrozinski and Wu bedatssthe only literature position addressing
applications of FPGAs in High Energy Physics. Theks by Pedroni and by Skahill are very well
written introductions to VHDL programming. Xilinxanuals cover the specifics of the Spartan-6
clocking, buffering, and memory structures. Alse book by P.P.Chu is offering insight into these
iIssues, even though it describes the previous FR@HAy. Note that in Xilinx parlance Spartan-6 was
a direct successor to Spartan-3. The book by Chatias outdated as its title might suggest. dinis
excellent book worth studying in detail.

3 FPGA architecture and programming

Parts of this section are repeated from Chapter fiefider's convenience. We will describe the
fundamentals of the Field Programmable Gate ArFd®GA) architecture. The name “gate array” is a
bit misleading. It was coined long ago when the RRBips indeed consisted of logic gates and little
else. Nowadays the FPGAs contain many high-levails such as memory blocks or arithmetic-logic
units. Briefly speaking, a modern FPGA is a digtfalp consisting of many silicon blocks (so-called
cores) such as flip-flops, memory registers, |lggites, and arithmetic-logic units. The cores are
connected with data paths (“wires” or “signals’atican be selectively enabled or disabled in aga®c
called “configuration”. Before the configuratioretiehip is dormant and it is doing nothing. All the
paths are closed. The configuration usually happepswer-up. It consists of loading the
“configuration file” (also called the “bit file”)rbm the flash memory to the FPGA chip. Configunatio
can be also performed on demand while the systeunigng. After the configuration has occurred,
some data paths are open, while others are stfed. Those paths, that are open, form an
interconnection pattern (the “netlist”) between tloees. The data words flow along the open paths,
from core to core, according to a periodic “clogWiich must be supplied to the FPGA chip. On each
clock cycle the data item is transformed by a paldir core, and then it is transferred to the cexe

at the end of the clock cycle. This mode of openais commonly named “a bucket brigade”. A more
formal name is a “pipeline” formed with the corésisg together, one after another.

The art of FPGA programming consists of devisirgrktwork of connections between the FPGA
cores in order to form the pipeline, which transferthe data according to the desired algorithm. The
conceptual difficulty lies in the fact that the wetk bears little resemblance to the algorithimeast at
the first sight. There is a correspondence betweeiconnections and the desired result at the £nd o
the pipeline, but it is only indirect. The FPGA grammer must develop enough insight into the FPGA
operation in order to devise the connections neéuleghlize the desired result. Another way ofistat
the difficulty is to note that the FPGA “programdek not describe a process unfolding in time @ike
computer program would do), but rather a networ&ative connections between the cores. Compared
with the computer program, there is an additioeaél of indirection between the FPGA “program”

and the desired result.

Fortunately, in many cases the understanding oFB®A operation does not need to be detailed to the
last bit. The task of FPGA programming is greathydified with a high-level Hardware Description
Language (HDL) such as VHDL or Verilog. The coniats are specified in a synthetic form in HDL,
and then automatically translated into the actealork for the particular FPGA. There are also
Matlab-based graphical tools that simplify the tagkanslating the abstract algorithm into the HDL
Nevertheless, the FPGA programming remains arvart hen using the high-level tools. Details like
numerical error propagation, integer fixed-pointhanetic, and many others need to be mastered in
order to transform the abstract algorithm intoftiven that the FPGA tools can tackle.

BlackVME is composed of two independent processimits, the FPGA and the Blackfin digital signal
processor (DSP). Both processing units cooperatiatmprocessing, according to the BlackVME
architecture described in Chapter 1 of this martdatdware-wise, the FPGA is connected to the
memory bus of the DSP (see the block diagram iphd). The FPGA is smemory-mapped
peripheralwith severaregistersassigned to hardcoded addresses in the Blackfinanespace. The
FPGA addresses are collected in a dedichéadier filethat is referenced by the C programs.
(According to the C parlance, the header file ¢gratsludedin the C program.) The definitions
contained in the header file agree with the adéetizat are hardcoded in the FPGA firmware.

4 Structure of the FPGA project

We will use VHDL for the rest of this chapter. Aifeg project is very similar, but it uses diffeten
keywords. We will use the word “program”, even tgbuwa more appropriate term would be “netlist
configuration”. The VHDL project is composed of tiedowing.

* The User Constraint File (UCF) collects the phylsicBbrmation such as pin locations, 1/10
voltages, I/O slew rates, clock frequency, andrigmmequirements. The format of the file is
documented in the Xilinx Constraints Guide avaiatobm ISE Help menu. The free template
which you have received from us includes the U@Gith all the information already
prepopulated. You should review details such as/iftages to match the voltage used on your
daughter card. You may also need to change théesamgled LVCMOS to differential LVDS,
according to the signaling solution that you anegis

* The main program file establishes the communicatetmveen the netlist that is internal to the
FPGA and the FPGA pins. The correspondence iseatkiimthe PORT declaration of this file.
The signal names in the PORT should correspondres in the UCF file, where the pin
locations are assigned to those signals.

* In addition to the PORT, the main program file atentains the ARCHITECTURE of the
design. Any valid VHDL code can be put into thehatiecture section. It is OK to put all the
code in this place in small projects. Larger prigeshiould be divided into several files to
improve maintainability.

* The lower level files are similar to the main filehey also have the port and the architecture
sections. The names of their port “pins” do noered the physical pins, but rather to the
internal “pins” of the main file. Therefore, thener-level files “plug into” the main program
file as “components”. The keyword “component” i2dsn the main file referring to the lower
level files.

* The lower level files can themselves refer to tegthower level. The hierarchy continues, in
principle indefinitely.

* In addition to components defined in the VHDL fil®gthe developer, there are two types of
components provided by Xilinx. THérary componentsre described ihibraries Guides
available from ISE help. These components are &fgismall. The Core Generator
components are large components that can be ex¢éinsustomized with Core Generator
interactive menu system. Core Generator can beedthom the Windows Start menu.

* The detailed information is available in tK&T User Guidand other guides that are available
from ISE Help menu.

ISE development system also supports the mixedikaeg projects where some components are
developed in VHDL, while some others are developéderilog, ABEL, or schematic diagrams. We
will not cover these details in the present tutoixtensive documentation on this and other adednc
topics is available from the ISE Help menu.

5 Two kinds of logic circuits, combinatorial and claked

Logic circuits can be broadly divided into two k&d\combinatorialcircuit is composed of logic
gates, multiplexers, and other standard logic carapts connected together. Such a circuit is reajizi
alogic function also known as boolean functionAn example of a logic function might be

Y =Aand B or C,

where A, B, C represent signals (wires) whose \s&atan be 0 or 1, represented by LOW or HIGH
voltage levels. The logic functions are construetedording to the boolean algebra of logic values 0
and 1. The boolean circuits are also known undenttmeasynchronous logicThe boolean circuits

can be of any complexity. Very complex such cirgwill have manyevels A level means “output of
this gate is connected to the input of the nex¢’g&ivery gate contributes a few nanoseconds of
propagation timdo the overall response time of the circuit. Tegponse time of a multilevel
combinatorial circuit can be pretty long. Multilé\asynchronous circuits can produglgches also
known ashazards A glitch is a momentary pulse at the output thatue to unequal propagation delays
through parallel branches of the multilevel circ@ince the propagation delays are never exactly
equal, there is always a risk of a glitch in evasynchronous circuit of appreciable complexity.

In principle, the FPGA can be used to implementir@ly combinatorial circuit of tremendous
complexity, because it contains many millions @fitogates. The response of such a circuit would las
pretty long, and the potential for glitches wouldhuge. Therefore, the FPGA is always usictpak
that is a periodic square wave connected to theatediclocking pin Quite often there are more than
one clock in the FPGA system. BlackVME uses twak$o themain board clocks used for any
purpose such as clocking the ADCs, while phacessor clocks used to connect the FPGA to the on-
board Blackfin processor. The clock pins are piigassl in the free template that you received fr@am u

The circuits that are clocked are nansgdchronousThe FPGA works according to this principle. We
call it a “bucket brigade”. A more formal name i§#eline” formed with the structural elements
strung together, one after another. In the rethiefchapter we will be dealing with synchronougi¢o
most of the time.

6 Controlling the FPGA with a register

We just said that thboolean logids represented with values 0 and 1, meaning LOWHiIGH

voltage levels. It is true in the logic textbookst it is not how the electrical connections worikhw
FPGAs. There is one more electrical state thateeslio use, and that is OFF, coded as 'Z' in the
VHDL language. The device that is alwaively drivingthe connection either LOW or HIGH
cannot be be put onbaiswhere it may cause tleontentionwith other devices. We need to be able to
turn the device OFF, and this is what the high idgpee state 'Z' is doing for us. We are now ready t
see the first example circuit coded with the folilogyWVHDL snippet.

IOBUS <= local_signal WHEN read_enable ='1' ELSE (others =>'Z");

This line of VHDL should be read as follows. TheBOS is declared in the PORT. It is assigned to the
off-chip bus in the UCF file. The bus candréven by thelocal_signal when thaead_enable is
requesting the FPGA to do so. Otherwise the FPG# affithe output drivers. The VHDL construct
others is a handy notation meaning “all the other bit$@BUS”. This shortcut evaluates to “all the

bits” when used as shown. The reader needs tosgeitto this shortcut that is used very often. We wi
now show the entire VHDL “program” surrounding sr@ppet.

1. -- CTRL_reg_CPU_writes.vhd. A register Blackfin --> FPGA.

2. -- (C) Wojtek Skulski 2003-2011.

3. -- This register can be written and read back by the CPU.

4. -- It does not read data from the FPGA fabric.

5. -- It can only read back the data previously writ ten to it.

6. -- Input: CLK, CS, WR, RD active HIGH, the usual r/w controls.

7. -- CS should be tied to the address decoder at the higher level.
8. -- Output: regout is static data to drive the co ntrolled circuitry.
9. library IEEE;

10. use IEEE.std_logic_1164.all;

11.

12. ENTITY CTRL_reg_CPU_writes IS

13. GENERIC (regWdt: INTEGER := 16);

14, PORT (

15. CLK :in STD_LOGIC; --- system clock from BF

16. CSs :in STD_LOGIC; --- chip select

17. WR :in STD_LOGIC; --- write enable

18. RD :in STD_LOGIC; ---read enable

19. IOBUS :inout STD_LOGIC_VECTOR (regWdt-1 downto O);
20. regout: out STD_LOGIC_VECTOR (regWdt-1 downto 0)
21.);

22. END CTRL_reg_CPU_writes;

23.

24. ARCHITECTURE CTRL_reg_behavior OF CTRL_reg_CPU_w rites IS
25. SIGNAL rena, wrena: STD_LOGIC;

26. SIGNAL local: STD_LOGIC_VECTOR(regWdt-1 downto 0O);

27.

28. BEGIN -- ARCHITECTURE IMPLEMENTATION

29. wrena <='1' WHEN ((CS='1") AND (WR='1") AND (RD ='0") ELSE "0}
30. rena <='1'"WHEN ((CS='1") AND (WR='0") AND (RD ='1") ELSE "0}
31.

32. IOBUS <= local WHEN rena = '1' ELSE (others =>" ZY;

33.

34. register: PROCESS (CLK, wrena) BEGIN

35. IF rising_edge(CLK) THEN

36. IF (wrena ='1") THEN

37. local <= 10BUS; — from Blackfin to fabric

38. END IF;

39. END IF; -- CLK

40. END PROCESS register;

41.

42. regout <= local; -- static output from the regis ter to controlled logic
43.

44, END CTRL_reg_behavior;

The reader needs to consult the references fotadeteexplanation of the VHDL syntax. Here we will
explain what this circuit is doing. First of ahis register is @omponenteclared in its own file. The
component file is only a template that canrstantiatedin the main VHDL file as many times as
needed. In this respect the register is like aggirdted circuit that gets purchased from a store in
several copies. In the electronic industry all¢bpies are identical, but here they are not bectngse
template iparametrizedwvith the keyword GENERIC meaning that the bit \wigt specified while
instantiating the template. The default width “1§bnly a placeholder. The component has several

inputs: the clock, the active-high read/write se®iRD and WR, and the active-high chip select CS.
The I0OBUS will be connected to the system bus whstantiating the component. Finaltyggout is a
static array of bitghat can be connected to anything inside the FREEZAGA had LEDs on top, we
could connectegout to these LEDs and turn them on and off by writmghe register.

The register is static in the following sense: imaghat we write a “1” to one of the bits. This’ {4ill
stay permanently there until we decide to writ@'atb the same bit. Therefore, this component is
intended tacontrol some circuitry in the FPGA. The register bits tam some options ON and OFF.
Alternatively, the value written to the registendze used as a calculation coefficient.

The register is read/write in the limited sensey &alue written to the register can be read bacthby
Blackfin processor. We say that the value has keehed However, the register cannot be used to
read any output calculated by the FPGA. In thassehe register ignidirectional It can transfer the
bit pattern from the processor to the FPGA, amait remember its value, but the other directiorsdoe
not work. The reason for this restriction is thay aircuit within the FPGA can have only one driver
Since the driver in this circuit is driving towarthee FPGA, adding the opposite driver is not pdssib

We said that the latched value can be read backt iwiplies some sort ahemorythat is implemented
in the section beginning with the keyword PROCEB® word “register” is a hint for the reader, Qut i
is a purely decorativiabel Most often such labels are omitted from the VHogram. The memory
is always implied when the keyword PROCESS is usgdther with a clockwhich is the case in this
example. The clock is nindicated by the name CLK, but rather by invokihg predeclared function
rising_edge . It is the combination of the PROCESS with theesteentiF rising_edge , that makes
the PROCESS intoféip-flop. A flip-flop is a memory element that can stay @NOFF. The names
“register” and “flip-flop” are in fact synonymous.

If this sounds confusing, then it really is. Thagen for the confusion is that the VHDL prograne ar
not being literally translated into the FPGA citeyi The VHDL compilers (and the Verilog as well)
are using a method called “inference”. The compibly not translate the text, but rather they sean t
text looking for familiar patterns. When the conepitees the pattern, it will “infer” the circuitry.
Another name for infer is “guess”. Yes, it is riglihe compiler is guessing what the programmer
meant to say. It is in the programmer's best istdteat the compiler is guessing right. The progrem
is advised to follow the code patterns that weggssted by the compiler vendor. The patterns are
available from the ISE Toolbar after pressing ilgatmost icon that looks like a bulb. Navigate to
VHDL — Synthesis Constructs and use only these snippetsler to help the compiler guess right.

One has to get used to such patterns. After a whee will become the second nature. The patterns
may look confusingly similar to one another. Hexam example of an apparent similarity.

PROCESS (CLK, RST) BEGIN
IF rising_edge(CLK) THEN
IF (RST ='1") THEN
local <= (others =>"0";
ELSE
local <= previous;
END IF;
END IF; -- CLK
END PROCESS;

©COoNOTALONE

This snippet may look confusingly similar to thewous one. It translates to a one-clock delay.dihe
patterniocal will be an exact copy of theevious , but delayed by a single clock cycle. The signal
RST implements eesetthat holds the bit pattern at “00..0”. We did nse labels in this example.

7 Reading from the FPGA device using a register

We need a complementary operation to the one disdysreviously. The following code will allow to
read a single word from the FPGA. This registexgain unidirectional for the reason discussedezarli

1. -- CTRL_reg_CPU_reads.vhd.

2. -- (C) Wojtek Skulski 2003-2011.

3. -- This register cannot be written by the CPU. Th ere is no WR control.
4. -- Data either comes from another clock domain or it is static.

5. -- If the other domain is not stopped then local will be complete mess.
6. -- Input from CPU: CLK, CS, RD active HIGH.

7. -- CS should be tied to the address decoder at the higher level.

8. -- Input from the fabric: data to be read by the CPU from the FPGA fabric.
9 library IEEE;

10. use IEEE.std_logic_1164.all;

11.

12. ENTITY CTRL_reg_CPU_reads IS

13. GENERIC (regWdt: INTEGER := 16);

14. PORT (

15. CLK :in STD_LOGIC; --- system clock from Blackfi n
16. Cs :in STD_LOGIC; --- chip select

17. RD :in STD_LOGIC; ---read enable

18. IOBUS : inout STD_LOGIC_VECTOR(regWdt-1 downto 0);
19. fabric: in STD_LOGIC_VECTOR (regWdt-1 downto 0)

20.);

21. END CTRL_reg_CPU_reads;

22.

23. ARCHITECTURE CTRL_reg_read_behavior OF CTRL reg_ CPU _reads IS
24. SIGNAL local: STD_LOGIC_VECTOR(regWdt-1 downto O);

25.

26. BEGIN -- ARCHITECTURE IMPLEMENTATION

27.

28. IOBUS <= local WHEN (CS='1") AND (RD="'1") ELSE (others =>'Z";
29.

30. PROCESS (CLK) BEGIN

31. IF (rising_edge(CLK)) THEN

32. local <= fabric; -- the crucial nodification is here
33. END IF; -- CLK

34. END PROCESS;

35.

36. END CTRL_reg_read_behavior;

This code is very similar to the previous one,thetsignal drivers are reversed. The FPGA fabric is
now driving thelocal register upon the rising edge of the clock. Presip it was the IOBUS whose
value was latched, but now it is tlaeric that is coming from within the FPGA. The modificat is
easy to overlook when looking at the text.

The lesson from the examples is that a seemingipnmmodification of the source code can lead to
profoundly different circuitry. In one case we désed a register controlling the FPGA, in the other
case we described a readout register, and in taatmee we described a delay by a single clock.

8 Dealing with clock domains

The previous example included a warnfifghe other domain is not stopped then local viaé
complete mess’lt refers to the fact that the FPGA operates uhae different clocks. One is the
“main clock” that is driving the daughter card. Tdtber is the CPU clock that is driving the readout
bus. The circuitry that is synchronized to a patfc clock is called thelock domairof this clock.

The two clocks are completely independent. Imatiat data words are changing under both clocks.
In the ADC clock domain the fresh ADC samples a&iad written to the word namesbric in the
previous example. At the same time the Blackfireading the same word using theal register that
is controlled by the Blackfin clock. It is easyitoagine thatabric may change in the middle of the
local being read out. The result will be a “complete siidecause some newly arriveatric bits

will make it through theabric — local transition, and some perhaps not. One should rdreethat
the circuitry is never perfectly balanced alongdalla paths. Some bits will be delayed by a fraabib

a nanosecond more than other bits, and the slowgawitl not make it.

The comment was warning against such a situatidraathe same time it provided a hint that “the
other domain should be stopped”. It does not mieanthe clock itself should get stopped. Stopping
the clock will throw all the phase lock loops (PLayt of synch. Clocks should never get stopped.
However, the data acquisiti@man be stopped. And it should, because there is pttiat in reading the
sample that is changing during the readout. Oneel#ta words in the ADC clock domain get static,
the other clock domain can safely read them out.

The simplest method of dealing with multiple clakmains is to stop changing the data words in one
clock domain, while the words are being used inatier domain. There are other methods allowing
both domains to keep running, but they are morepticated. For example, the designer may use a
first-in, first-out buffer (FIFO) between the twomains. The FIFOs provide means of “crossing the
clock boundary” to avoid the bit synchronizatioolpems. The FPGA programmer has to study the
relevant chapters describing the particular sohsti}ecommended by Xilinx. (Keep in mind that other
FPGA vendors may have implemented the relevant coens differently from Xilinx.)

We conclude this section with two recommendatiangerning multiple clock domains.

1. Always stop changing the data in the clock dontia@t is producing the data before using the
data in another clock domain. This solution isfyretdical, but it is guaranteed to work.

2. Read the relevant chapters from the FPGA textboekling with the particular FPGA family
that you are using.

9 Using a processor's bus address

Life would be simple if we needed one input and oagut register in the FPGA. Unfortunately, the
FPGA is a big device with many resources that aaadudressed individually by the Blackfin
processor. Inside the FPGA the resources are ctethexaraddress decodgewhich is yet another
pattern of the VHDL code. There are several reconted ways of writing the decoder in VHDL.

First we will show the code snipped from the ISlBgaage Templates, and then we will show another
equally valid way of coding the same.

1. --- Address decoder

2. --- Code pattern from ISE Language Templates -> S ynthesis Constructs
3. process (clock) begin

4. if (clock'event and clock ='1") then

5. if (reset ='1") then

6. output <= "0000";

7. else

8. case inputis

9. when "00" => output <= "000 1"
10. when "01" => output <="00 107
11. when "10" => output <="0 100"
12. when "11" => output <=" 1000
13. when others => output <= "0000";

14. end case;

15. end if; -- reset

16. end if; -- clock

17. end process;

First of all we see that VHDL is case insensiti@econd, here we see yet another incarnation of a
“process”. Third, Xilinx chose not to use the fuontrising_edge(clock) , which we find more
descriptive thamlock'event and clock ='1' . The two idioms are exactly equivalent. Either way
the VHDL compiler will inferoutput as a register that is synchronized to the clock.

The pattern of a “walking 1” in lines 7 through ib@plements a decoder. Every binary representation
of theinput address gets translated to a “1” in the corresipgnabsition. Theutput bits should be
connected to chip-select CS inputs of the regsterponents shown earlier. Two or more registers wil
be prevented from driving the bus because onlyglei‘l” is active at any given time.

We now demonstrate another way of writing the asikldecoder that looks remarkably different. We
use this form in our own VHDL code.

1. RawSelect <=

2. "000 1" WHEN BF_ADDR (25 downto 2)="000000000000000000000 001" ELSE
3. "00 10" WHEN BF_ADDR (25 downto 2)="00000000000000000000 0010" ELSE
4. "0 100" WHEN BF_ADDR (25 downto 2)="0000000000000000000 00011" ELSE
5. 1000" WHEN BF_ADDR (25 downto 2)="000000000000000000 000100" ELSE
6. (others =>'0);

7. RegSelect <= RawSelect WHEN (BF_AMSO0 = LOW) AND (BF_AMS1 = HIGH)
8. ELSE (others =>'0";

Unlike the previous decoder, the resultant ciraulitbe combinatorial rather than registered. Itl e
susceptible to glitches. It is virtually guaranteleat the glitches will occur iRawSelect because all

23 address bits cannot be perfectly synchronizked.designer must somehow know that glitches will
not be a problem before using this circuit. How wanknow that this solution is safe to use?

The answer can be found in the Blackfin data stieegtspecifies the timing between the address bits
and the read/write strobes implementing the ingestimandard memory bus. The WR and RD strobes
that are connected to the registers (see previmas) become active many nanoseconds after the
transitions of the address bits. Even thougiRéweSelect may not be valid during the address
transition, this period of invalidity happens odtsihe active time window that is defined by the

memory strobes. One should note that the strobgmate from a thoroughly tested microprocessor
chip and therefore they are safe to use. The csiocidrom this example is that the validity of a
circuit cannot be established without knowing tbatext in which this circuit will operate. In

principle, glitches are a bad thing. However, tipegsence may be rendered completely irrelevant by
the context of the application.

There are a few other important points to notédnig €xample. First, we are using the address bits o
the Blackfin processor BF561. The designer neegsuy the processor's data sheet and its Hardware
Reference Manual (HRM) before implementing the adglidecoder. The processor must operate in the
proper memory mode (32-bit mode in this case) bsxate are decoding its address bits downto 2.
The two least significant bits (LSB) are not deabtiecause they are not driven in the 32-bit mode.
These details are explained in the HRM.

Another detail concerns the asynchronous memorges(@VS) strobes. There are four such signals in
case of the BF561, AMSO through AMS3. Each on@ldi@ssing a separate 64-megabyte range of
memory. Two of these are used to address the Ethand the USB chips outside the FPGA. The
remaining two, the AMSO and AMS1, are routed toRR&A. These two signals are used in our
decoder tajualify the address bits. According to the code from tle®ipus page, the signal

RegSelect is active (i.e., non-zero) when the AMSL1 is actieis strobe is directed to the AMS1
address range that can be found in the proceskddssheet. Utilizing the AMSx strobes is mandatory
because the same ADDR bit combination will occuoimr cases, once per AMS memory space. If we
neglected to use the AMS strobes, the FPGA couloomd to the memory request directed to the
Ethernet chip, causing an immediate system crash.

One has to combine all the above information ireotd calculate the memory addresses issued by the
processor. The following details have to be kephind.

1. Two LSBs 0 and 1 are not used by the decoderusedhe processor is working in the 32-bit
mode. Consequently, one should extend the bitnpatte the right by two bits “00” before
calculating the addresses to be used in the C hébade

2. The AMSx spaces start at fixed “base addresge<iified in the data sheet. The AMS1 base
address has to be added to the bit pattern obtherl25 address bits (23 bits from our example,
extended with two LSBs as explained above).

3. All the memory strobes originally issued by tleqessor are active-low. The strobes are
converted to active-high inside the FPGA. We usesittive-high convention in the FPGA
designs because several library components expelatastive-high signals.

We will now provide the resulting addresses thatBhackfin processor will issue to access the FPGA
registers connected to the address decoder. Tterrshould double check that his/her address
calculations yield the same results.

0x2400 0000 unused

0x2400 0004 1 * register
0x2400 0008 2 " register
0x2400 000c 3 ™ register
0x2400 0010 4 ™ register

10 Making the components visible throughout the pragct

The two types of registers shown earlier are exampf components that you can use throughout your
projects. There are three important things to keepind.

1. The component can exist in more than one coplyract analogy with hardware components.

2. Each time you instantiate the component, yowcerating a separate hardware copy of it.
Components are built from hardware elements sugats, flip-flops, etc. These elements are
taken from the enormous pool provided by the FP&#i€ and assembled into a local instance
of the component that you are instantiating.

3. Unlike electronics bought in a store, the VHDIoqgmonents do not have to be identical. If the
component was parametrized with GENERIC statemémgg, you can change the parameters
each time the component is instantiated. In sughyayou can create several registers of

different bit widths, for instance.

We will now discuss how to make the best use oMHB®L component files that we presented earlier.
First of all, the component instance must matchPO&T declaration in the component source file. In
principle, it should be sufficient to declare th@RT twice: once in the prototype file, and the seto
time when instantiating the component. HoweverMR®L committee decided otherwise. They
decided that the PORT declaration has to be reph@ae more time before the component is
instantiated. It is a bit annoying. This (mis)featof the VHDL can be worked around as follows. We
collect these redundant component declarationsaifRACKAGE that is used in all our files. The
package makes the component declarations visiledghout the entire project.

-- BlackVME_types.vhd. Package collects all our de
-- (C) Wojtek Skulski 2011-2012.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

PACKAGE BlackVME_types IS

COMPONENT CTRL_reg_CPU_writes
GENERIC (regWdt : INTEGER := 16);

PORT (

CLK :in STD_LOGIC;

CS 1in STD_LOGIC;

WR :in STD_LOGIC;

RD :in STD_LOGIC;

IOBUS :inout STD_LOGIC_VECTOR
regout : out STD_LOGIC_VECTOR

END COMPONENT;

COMPONENT CTRL_reg_CPU_reads
GENERIC (regWdt : INTEGER := 16);

PORT (

CLK :in STD_LOGIC;

cs :in STD_LOGIC;

RD -in STD_LOGIC;

IOBUS : inout STD_LOGIC_VECTOR
fabric : in STD_LOGIC_VECTOR

END COMPONENT;
END BlackVME_types;

clarations.

-- component #1

(regWdt-1 downto 0);
(regWdt-1 downto 0)); - - output

-- component #2

(regWdt-1 downto 0);
(regWdt-1 downto 0)); -- input

-- end of the file

The PACKAGE declaration is similar to the C langa&gader files that establish “prototypes” of C
functions. Just like the header files, VHDL packagee used throughout the project. The VHDL file
that is going to make use of the components wvalitss follows.

1. library IEEE;

2. use IEEE.STD_LOGIC_1164.ALL; -- basic VHDL

3. -- Our own types, constants, and components in fi le BlackVME_types.vhd
4. use work.BlackVME _types.all;

The package declarations are compiled into a stdnglarkhorse library namegork during project
compilation. The libraryork is automatically included by all files in the pgof. It does not need to be
mentioned with thébrary clause. It is sufficient tase our package in line 4. From then on all the
components collected in the package are knownetptbject.

11 Making use of the register component

Each time you instantiate the component, you aatitrg a separate hardware copy of it. Just like an
other electronic hardware, the component instancs tre connected to some physical wires. The
wires are called “signals” in VHDL. The followingbde snippet is instantiating a register that allows
the Blackfin processor to toggle several contrtd biside the FPGA. This snippet should be pubén t
architecture implementation of the main projed.fil

1. -- Control register BF --> FPGA

2 BFcontrol: CTRL_reg_CPU_writes -- BF control ov er FPGA
3 GENERIC MAP (regWdt => 16)

4 PORT MAP (

5. CLK => BF_CLK,

6 CSs => RegSelect (0),

7 WR =>BF_WRENAL,

8 RD => BF _renal,

9. IOBUS =>BF_DATA (15 downto 0),

10. regout => BF _ctrl_ Reg (15 downto 0));

Apparently the VHDL committee was very fond of #meows => and <=. In this code => means
“connect”. The inputs of the register are connettetthe Blackfin memory signals. The chip select CS
is tied to the address decoder shown earlier. Tihgub is wired to the control bits_ctrl_ Reg . These
bits turn ON and OFF certain firmware features. ¢@mmpleteness we show how the Blackfin memory
strobes are conditioned before being wired to ¢lggster. The signals marked with “_b” are active-lo
signals from the processor. They are convertedtiveahigh signals before being used in the FPGA.

1. -- Convert active-low signals from Blackfin t 0 active-high
2. BF_AMS1 <= NOT BF_AMS1_b; -- AMS1 memory space

3. BF_WR <= NOT BF_AWE_b;

4. BF_RD <= NOT BF_ARE_b;

5. BF_renal <= BF_AMS1 AND BF_RD AND (not BF_WR);

6. BF_WRENA1 <= BF_AMS1 AND BF_WR AND (not BF_RD) ;

12 Utilizing the dual-port memory blocks

The on-board FPGA contains 603 kilobytes of duat-ptmck memory (BRAM) partitioned into as
many as 268 memory blocks, 18 kilobits each. Makifiigctive use of the BRAM is tremendously
important in many applications. There are two wafyachieving this goal.

1. The blocks can be instantiated “by hand” in tlag/\described in the previous section. One
needs to use the library named UNISIM that is sepdby Xilinx. Memory components are
declared in that library. Using the memory compaséndescribed in Spartan-6 Libraries
Guide available from ISE Help. One should readpihges titled BRAM in Chapter 2.

2. The BRAM can be configured with Core Generatat th a part of Xilinx ISE. Core Generator
will customize many options that are available RAV components, as well as provide a
netlist file that tiles several BRAM's togetherara composite block of the size and aspect ratio
that is needed.

We recommend using the Core Generator because mastaatiation is tedious. Extensive help is
available from within the Core Generator. The Gatwrwill provide a set of files as well as a
comprehensive Data Sheet that explains all theaatedetails. We will not attempt to duplicate this
information in this manual. We only point out thia¢ Core Generator will wrap the BRAM blocks into
a component whose declaration should be placedhetpackage BlackVME _types as follows.

-- EXAMPLE: Dual port "simple memory" generated wit h Core Generator
-- Port A (BF write) N/2 cells each 32 bit wide
-- Port B (FPGA read) N cells each 16 bit wide

-- This component is in three files named "EXAMPLE_ BRAM_8K"
--.ngc, .xco, .vho. The .vho contains instructions .
-- FPGA side: 8k 16-bit samples. BF side: 4k 32-bi te words.

-- BF: Port A addr (11 : 0), but BF uses address (13:2)

-- FPGA: Port B addr (12 : 0)
COMPONENT EXAMPLE_BRAM_8k
PORT (
port A, BF side
clka :IN std_logic;

ena . IN std_logic; -- read enable

wea :IN std_logic_ VECTOR(0 downto 0); -- write en able

addra :IN std_logic VECTOR(11 downto 0); -- (13:2) =12 bits

dina :IN std_logic_VECTOR(31 downto 0); -- Blackfi n writes directly to this
douta : OUT std_logic_VECTOR(31 downto 0); -- connec t this to a multiplexer

port B; FPGA side
clkb :IN std_logic;

enb . IN std_logic; -- read enable
web . IN std_logic_VECTOR(0 downto 0); -- write ena ble
addrb : IN std_logic_ VECTOR(12 downto 0); -- (12: 0) = 13 bits

dinb :IN std_logic_VECTOR(15 downto 0);
doutb : OUT std_logic_VECTOR(15 downto 0));
END COMPONENT;

This particular component has been tailored tone@ds indicated with comments. We will refrain
from explaining the details because your requirdseray be different. The memory component
named EXAMPLE_BRAM_8k can be instantiated in them&1DL file according to the rules
explained in the earlier sections.

13 Addressing blocks of on-chip memory

The dual-port BRAM is addressed from two sides. FR&A side can use a simple counter to step
through the memory range. The counter wraps aradnah all its bits are '1'. Waveform acquisition

can be restarted from the start of the memory bl@cdklecting the samples is performed when enabled,
otherwise the memory counter is not running. Lihélsrough 4 should be put in the declaration
section. The rest of the code should be put irtcatichitecture implementation.

1. library IEEE;

2. use I[EEE.STD_LOGIC_1164.ALL; -- basic VHDL

3. use I[EEE.STD_LOGIC_ARITH.ALL; -- basic arith metics on std vectors
4. SIGNAL MemAddr_ctr: STD_LOGIC_VECTOR (Nbit-1 dow nto 0); -- declaration
5.

6. PROCESS (CLK, restart, enable) BEGIN

7. IF rising_edge (CLK) THEN

8. IF restart ='1' THEN

9. MemAddr_ctr <= (others =>"'0");

10. ELSIF enable ='1' THEN

11. MemAddr_ctr <= MemAddr_ctr + 1; -- this co unter wraps around
12. END IF;

13. END IF; -- CLK

14. END PROCESS;

The Blackfin side is a bit more complicated. Thadifin address is split into two parts. The lower-
order bits (13 downto 2) are tied to the BRAM adgrd hese bits do not include the two lowest order
bits 0 and 1 because the Blackfin address jumgeurywhen the processor is working in the 32-bit
mode. The upper part (25 downto 15) of the Blackfidress is used to select among multiple BRAM
blocks, using a variant of the address decoder shmlow.

-- At BF side, 4k-word needs 12-bit address, 13:2. The lowest select bit is 14.
MemSelect <= -- result addr

"000 1" WHEN BF_AMSO0& BF_ADDR(25 downto 14)="100000000000 0" ELSE -- 0x20000000
"00 10" WHEN BF_AMSO0& BF_ADDR(25 downto 14)="10000010000 00" ELSE -- 0x20100000
"0 100" WHEN BF_AMS0& BF_ADDR(25 downto 14)="1000010000 000" ELSE -- 0x20200000
"1000" WHEN BF_AMSO0& BF_ADDR(25 downto 14)="100001100 0000" ELSE -- 0x20300000
(others=>'0");

We used a notation trick in the above example.AM&0 select was prepended to the address bits
using the VHDL operatos that concatenates bits together. The leftmosirithe address bit patterns
corresponds to the AMSO bit. In such a way we didhave to write a separate line of the VHDL code
that would AND the select vector with the AMSO HGihe ANDing was implicitly coded into the
address bit pattern used in the decoder. This édradnotation shortcut is very handy, but it mayabe

bit confusing at the first sight. Neverthelesfatongs to the war chest of VHDL programming.

The MemSelect bit is then tied to the respectiveatde” bit of the Blackfin side of the BRAM. This

bit will place the BRAM at the address range intBdain the comment. For example, if we use the 0-th
bit, the memory will be mapped starting at addozgs000000 in hex. The reader should verify that
the Blackfin addresses are indeed as indicatdteicdmments. Please read in the BF561 data sheet
what addresses correspond to which AMSx space wemperform this exercise.

14 Multiplexing BRAM memories for Blackfin readout

Somewhat surprisingly, the outputs of the dual-B&RAM are not equipped with tristate buffers. As a
consequence, the BRAM outputs cannot be directtgdvio the readout bus because they would create
electrical contention. Previously we did not endeutthe contention because register outputs were
equipped with the tristates. Now we have to de#t wie problem.

The BRAM outputs have to be multiplexed. We wilhgmare two different ways to infer the
multiplexer. The first example is provided by ISinghesis Constructs. It has been edited for clarity

--- Multiplexer

--- Code pattern from ISE Language Templates -> Syn thesis Constructs
1. process (select,inputl,input2,input3,input4)
2. begin
3. case selectis

4 when "00" => output <= inputl;

5 when "01" => output <= input2;

6 when "10" => output <= input3;

7 when "11" => output <= input4;

8. when others => output <= inputl; -- redundan t?
9. endcase;

10. end process;

The multiplexer circuit was coded agracess that does not reference the clock. Consequehty, t
combinatorial circuitry will be inferred by the cqiter. Here we see that thecess does not
necessarily imply that the circuit is clocked.Héte is no reference to the clock, then the cimilitbe
combinatorial. (As a reminder, the clock is impli®garising_edge , falling_edge , Oor a construct
signal'event and signal="1" .) Line 8 covers non-boolean signal values sucX'aw 'Z'.

We now present another version of a multiplexet thakes the reference to the Blackfin AMS space.

1. TYPE BF_MemBus_t IS ARRAY (3 downto 0) OF STD_L OGIC_VECTOR (31 DOWNTO 0);
2.

3. -- array of BF memory outputs, 32 bits each.

4. SIGNAL BF_MemBus : BF_MemBus_t;

5.

6. MemorySpace0 <=

7. BF_MemBus (0) WHEN select="00" ELSE

8. BF_MemBus (1) WHEN select="01" ELSE

9. BF_MemBus (2) WHEN select="10" ELSE

10. BF_MemBus (3) WHEN select="11" ELSE

11. (others=>'Z";

12.

13. BF_DATA <= MemorySpace0 WHEN BF _rena0 ='1' ELS E (others=>'Z";

The type declaration from line 1 should be put hi® central repository BlackVME_types. The output
MemorySpace0 is switched among bit vectoes MemBusaccording to the selection bit pattern. In line
13 the output from the multiplexer is wired to 8lackfin data bus through a tristate buffer conéal

by the read strobe. One should note that in omleomplete the circuit the individual MemBus vestor
are connected to the podsuta of the BRAM memories shown earlier. The other pdirta can be
wired directly to the Blackfin BF_DATA because bgimputs they cannot cause a contention.

15 Synchronizing an external signal to the FPGA cldc

We are now turning our attention to bit processivg.start with a very simple example. Let us make
sure that an external signal starts on an FPGAdoandary. This example can be applied to thetfron
panel NIM inputs. But first let's ask why do wee&ar

The answer is that an unsynchronized signal isnpi@déy a very bad thing. Let's imagine that we use
an external NIM pulse to zero a time stamping tegi©K, so we connect it toreset of a free-
running counter similar to the one shown in SectidnWe will find out that we indeed reset the
counter most of the time. But sometimes we do 8ometimes the counter starts from a seemingly
random bit pattern. What is going on?

The answer is “metastability”. Type this word todgte and several articles will pop up, documenting
the importance of the problem. The metastabilityuos when the signal edge hits the flip-flopust

the wrong momenviolating the timing requirements. Thest wrongis guaranteed to happen if we
repeatedly use a signal whose edge is unrelatixd tdock. So we need to make sure that beforgusin
the external NIM pulse inside the FPGA, we forseeitige to be synchronized to the FPGA clock.

1. --ISE VHDL templates --> Synthesis Constructs - -> Misc --> Debounce
2. --**Insert the following between the 'architectu re' and 'begin’' keywords**
3. signal Q1, Q2, Q3 : std_logic;

4,

5. --**Insert the following after the 'begin’ keywo rd**

6. process(CLK) begin

7. if rising_edge(CLK) then

8. Q1 <= external; -- time = 1. Can be meta stable.

9. Q2<=0Q1; -- time = 2. Good to use.

10. Q3<=Q2; -- time = 3. Perfect to use.

11. end if;

12. end process;

The code describes a clocked circuit built witp-fliops. That's what we need. The three signals Q1,
Q2, and Q3 are copies of thgernal , but delayed by one, two, and three clock cy@sctly
speaking, Q1 is delayed by anything between zeddlaa full clock because theternal can hit the
flip-flop any time within the clock cycle. The Q& Q3 are in the fixed time relationship to Q1. The
Q2 should be good enough. The Q3 is guaranteed peilfect for the age of the Universe.

There can be two questions concerning this coggshi(a) How does it follow that Q1 is a delayed
copy ofexternal , and so on with Q2 and Q3? (b) How does it woway?

The answers: (a) Don't even ask. This kind of dedm idiom. If there is a rising edge, then thene
flip-flops. If there is a string of assignmentseriflip-flops are strung one after another. Thatiat we
need. (b) The circuit works through black magicdubasn probabilities. The topic is not an easy one.

16 Delaying a signal by a fixed number of clock cyes

The same circuit can be used to delay any bit fiyed number of clocks, three in this case. Just
replace thexternal ~ with any_signal internal to the FPGA. Thany_signal must belong to the
same clock domain. If it does not then we are uasg one. A signal belonging to another clock
domain is an external signal from the point of vigithe target domain.

17 Generating a short pulse lasting one clock cycle

The same circuit can be used to manufacture a pagtiag one clock cycle. Such a pulse can be usefu
because it corresponds to a leading edge. In atbets, you have a long pulse of unknown duration,
perhaps milliseconds. But you need a short pulseget your counter and then start counting right
away without waiting till the long pulse goes awlgre is the solution. Apply the following to the Q
signals from the previous section on synchronizing.

pulsel <= Q1 and (not Q2); -- use with internal sign al
pulse2 <= Q2 and (not Q3); -- use with external sign al

One of these lines should be applied to the Q 8dgnam the previous circuit. Version 1 produces th
pulse one clock earlier than version 2, but itisceptible to metastability. Version 2 should bedus
with external signals. There are some caveats vputiing in writing.

1. Somewhat surprisingly, this circuit seems to hitaie a single-clock pulse applied to its input.
One can say that applying the leading-edge detetiice makes no sense, so maybe there is
no problem. Nevertheless, annihilating single-cloguts was not expected. Beware.

2. Asimilar circuit described in the book by Chupmages 114, 117 did not work well. Most often
it produced double-clock output, but sometimesaswa single clock. The behavior was bizarre.
We recommend our solution described in this sediEcause it has been tested in Spartan-6.

18 Delaying a one-bit signal by a variable number oflock cycles

Now we are going to do some heavy lifting. We wandelay a signal by a variable number of clock
cycles, from 1 to 32 clocks. The signal will be doewide (for example, the NIM input after it was
synchronized). We want that Blackfin controls tietag.

1. --**Insert the following at the beginning of th e file

2. library unisim; -- Xilinx library components

3. use unisim.vcomponents.all;

4.

5. --**Insert the following between the 'architect ure' and 'begin’
6. signal prgm: STD_LOGIC_VECTOR (4 downto 0);

7.

8. --**Insert the following after the 'begin’ keyw ord**

9. shift_register_32 taps: SRLC32E

10. generic map (INIT => X"00000000")

11. port map (

12. CLK => CLK, -- Clock input

13. D =>din, -- shift register bit input

14. Q31 =>open, -- SRL cascade output (connect o nly to next SRL)
15. A =>prgm, --5-bit shift depth static sele ct input
16. CE =>"1", -- Clock enable input, always en abled
17. Q =>dout -- output bit from shift registe r

18.);

We used a shift register SRL32 that Xilinx builtarSpartan-6. The number of delay “taps” can be
controlled with a register of the ty@a@RL_reg_CPU_writes that was described earlier. The register
should be instantiated with 5 bits, because SRl this number of control bits. The register will
be connected to the bit vectogm, which in turn will be wired to the shift registeontrol. The

register will be memory-mapped on the Blackfin buthe way elaborated earlier. The chain of
connections is sketched below. Writing down the \IHibatements is left as an exercise for the reader.

Blackfin bus - CTRL_reg_CPU_writes - prgm - shift_register_32_taps

In this way we demonstrated how the register corapbdescribed earlier can be utilized to implement
functionality that is both needed and not easyrplement without a war chest of proven components.

19 Delaying a multi-bit signal by a variable numberof clock cycles

Now we want to delay a multi-bit signal by a vateabhumber of clock cycles, from 1 to 32 clocks. The
signal will be of any width. For example, we categea stream of ADC samples in order to match a
time-of-flight difference among detector subsysteWiis want that Blackfin controls the delay.

-- Delay_Line_L32.vhd. (C) Wojtek Skulski 2003-2012

-- Input: prgm 0..31 means delay by 1..32 clocks

library IEEE;

use IEEE.std_logic_1164.all;

library unisim; -- Xilinx librar y components
use unisim.vcomponents.all;

ENTITY Delay_Line_L32 IS

GENERIC (PipeWdt: INTEGER := 14); -- default bit width of the stream
PORT (
CLK :in STD_LOGIC;
CE :in STD_LOGIC; -- clock enable
prgm :in STD_LOGIC_VECTOR (4 downto 0); -- d elay 0..31, input
din :in STD_LOGIC_VECTOR (PipeWdt-1 downto 0);
dout : out STD_LOGIC_VECTOR (PipeWdt-1 downto 0)

);
end Delay Line L32;

ARCHITECTURE SRL32 OF Delay_Line_L32 IS BEGIN
pipe: FOR i IN O TO PipeWdt-1 GENERATE

slice : SRLC32E
GENERIC MAP (INIT => X"00000000")

PORT MAP (
CLK => CLK, -- Clock input
D =>din(i), -- SRL data input
Q31 =>o0pen, -- SRL cascade output pin (connec t only to next SRL)
A =>prgm, --5-bit shift depth select input
CE =>CE, -- Clock enable can freeze the pi pe

Q =>dout(i)); -- SRL data output
END GENERATE pipe;
END SRL32; -- end of the component file

The component from the previous page should bexdstin the central repository BlackVME_types.
It can be instantiated in the design, connectdbldoegisteCTRL_reg_CPU_writes , and controlled by
the Blackfin. One can change on the fly by how meogk ticks the data stream will be delayed, from
1 to 32 clock ticks. The chain of connections mikir to the previous example.

Blackfin bus - CTRL_reg_CPU_writes - prgm - Delay Line L32

The clock enable CE is a handy method of tempgréelkezing the shift registers in their currentesta

It can be used to capture a stretch of the dagarstin the pipe. The captured samples can be then
clocked one by one from the pipe by pulsing the E&ch time the CE is pulsed HIGH for the duration
of one clock, one sample will be clocked out fréra €nd of the pipe, and one sample will be clocked
into it at the beginning. (Use the previous onetsbhanake single-clock CE pulses.) One should note
that the pipe cannot be accessed in parallel. ihemethod of retrieving the samples is to cloodnth
out from the end of the pipe.

We will now present a code snippet that implemeandgsnilar functionality, but this time the compiler
is allowed to infer the circuit.

1. -- Language templates --> Synthesis constructs --> Shift registers.
2.

3. TYPE Tpipe IS ARRAY(PipeLen-1 downto 0) OF

4, STD_LOGIC_VECTOR (PipeWdt-1 downto 0);

5. SIGNAL pipe: Tpipe;

6. -- The "dynamic shift register" should be infer red by synthesis.
7. process (CLK) begin

8. if rising_edge (CLK) then

9. pipe <= pipe(PipeLen-2 DOWNTO 0) & din;

10. end if;

11. end process;

12. dout <= pipe(conv_integer(prgm)); -- select the dynamic length

The difference between this snippet and the prevane is three fold. First, there is no clock eaabl
CE in the snippet. Adding the CE is left as an eiser Second, the length of the pipe is not dedlare
explicitly. The code is parametrized with the gémeamedrPipeLen that can be any number. The
compiler can infer pipes of any length and implehtbam any way it chooses. Most likely, the
compiler will string together as many SRL16 or SRIBocks as needed and it will connect fikgen
bits to implement the requested functionality.otisds more convenient than the component shown
earlier where the maximum delay was imposed byguia library component SRL32 whose
maximum capacity is rigidly defined by its interrsaucture.

The last difference between the previous code laistne is that we can be reasonably certain what
the previous code was doing by just looking ahd seading the SRL32 description in the Spartan-6
Libraries Guide. The margin for mistakes was reabbnnarrow in the former case. In the latter case
we think that we understand the function of thewirbased on the behavioral VHDL code. But there
can be a difference between what we think and wteatompiler is thinking, even though the code
snippet was copied from ISE Help. It happens noavtaen that the code snippets do not yield the
desired circuitry. After all, the Help system wasnmposed by humans who occasionally make their
mistakes. The programmer must be prepared fontgte behavioral code snippets piece by piece.

20 Driving the clock off-chip

The next two sections are based on our experieitbesending a data stream from the FPGA to a
device that required double data rate (DDR). Thérmd solutions are applicable to about 100 MHz,
that is 100 megabits-per-second (mbps) per IOqisihgle data rate (SDR) and 200 mbps for DDR.

DDR transmission is a common technique where dé&ale latched on both rising and falling clock
edges. It is commonly used together with sourcefsyonous transmission (SST) where both the data
and the associated clock are sent together froradheee to the destination along a multiwire cale

a bunch of printed circuit board traces with clgsehtched lengths. The idea is that as the clodk an
the data travel together, their phase relationshit distorted and the clock can be used to lteh
data at the destination. The clock that is trarnswehito another device is calledaawarded clock

One should note that the received clock is defimsgwn clock domain at the destination, even in
those cases where it toggles at precisely the $@meency as some other clock in the destinatigp. ch
The captured bits must be transferred to the atloek domains with proper techniques described in
Xilinx application notes. The reader should sedhehfollowing web page for the worptureor a
phrasedata capture The relevant information can be found in XAPP22BPP709, XAPP802,
XAPP855, XAPP860, and others. The application notesbe downloaded from the following page:

http://www.xilinx.com/support/documentation/applica notes.htm

The referenced information is crucial in order &sign reliable data links between two FPGAs. The
problem is at the receiving end where the recetleck has no fixed relationship to the on-chip &loc
even if both toggle at the same frequency. Thestraiting end has no such problem because the data
and the forwarded clock are in phase with the dp-clock, which is in fact identical with the
forwarded clock.

The above considerations will be important if teader is planning to send the data from one FPGA to
another one at a high data rate, or along a cdlae appreciable length. The problem becomes less
severe in case of the on-board FIFO connectiondmivthe Spartan-6 FPGA and the Blackfin
processor, especially when the FPGA is the tramsmand Blackfin is the receiver of the FIFO data.
The Blackfin end of the FIFO is namedParallel Peripheral Interfac€PPI). Its timing is described on
page 28 of the BF561 Data Sheet revision D. Ther¢hasee important observations concerning the
Blackfin PPI.

1. The PPl uses a single data rate (SDR) ratherDitdR. The data bits are latched on the rising
edge of the forwarded clock. The falling edge isutdized.

2. The PPI clock is an input-only pin at the Blaokéind. This is fine when Blackfin is receiving
the data. It may lead to some timing complicatibidackfin is sending the data, because the
data bits and the clock will then travel in the ogipe directions.

3. The bit capture was implemented by the desigoieBsackfin silicon. We do not need to bother
how the bits are captured at the Blackfin end.

4. The PPl is running at % of the Blackfin periphetack that is {.x = 120 MHz on the
BlackVME board. It means that PPI is running atMifz, that is a period of 16.7 ns, and half
period of 8.3 ns. Establishing a proper timing nrawgthin such a wide window should not be
too problematic. We only need to supply the biith wroper bit-to-clock alignment described
on page 28 of the BF561 Data Sheet.

Now we will tackle the first part of the topic. Wieant to drive the clock off-chip in order to gertera
the forwarded clock either for the Blackfin, or &me other destination chip. Lets try this:

output_pin <= CLK;

The assignment is perfectly legal and it workedun previous design based on Spartan3A-DSP.
Unfortunately, upon seeing this assignment thed&fapiler violently complained about illegal clock
forwarding techniques in Spartan-6. We were adviegedad a paragraph from the Synthesis
Constructs— Coding Examples» Misc — Output Clock Forwarding Using DDR> Info (Clock
Forwarding). A part of the paragraph is reproduceldw.

The basic technique is to supply the input clock to an output DDR register where one
value is tied to a logic 0 and the other is tied to a logic 1. A clock can be made with
the same phase relationship (plus the added offset delay) or 180 degrees out of phase by
changing the 1 and 0 values to the inputs to the DD R register.

An example code for Spartan-6 was also suppliederhelp. We worked out the example as follows.

-- In Spartan6 we cannot simply drive the 0B with a clock signal.
-- We rather have to use "clock forwarding techniqu es" with ODDR2 primitive.
-- The register output can be routed only to ILOGIC , IODELAY, or IOB.

ODDR2_clock : ODDR2
GENERIC MAP(

DDR_ALIGNMENT =>"NONE", -- Output alignment to "NONE", "C0", "C1"
INIT =>"0/, -- Initial state of the Q output to '0'or 'l
SRTYPE =>"ASYNC") -- Specifies "SYNC" or "ASYNC " set/reset
port map (

Q = CLK_ RAW -- out put data (clock in this case) to output pad

C0 => CLK180, -- clockO input to be forwarded

C1 => CLK, -- clockl input inverted

CE => HIGH, -- clock enable input

DO => HIGH, -- data input associated with Cloc ko

D1 => LOW, -- data input associated with Clock 1

R =>LOW, -- reset input

S =>LOW); -- set input

According to the quoted paragraph, plus other renended reading (Libraries Guide, the page about
ODDR2) the two signals CLK and CLK180 are the tvensions of the same clock out of phase by 180
degrees. We generated the inverted clock witrelfarce:

CLK180 <= NOT CLK;

This assignment was expected to bring another whgemplaints, but surprisingly there were none.
Should the compiler have complained, we would hesexl the Digital Clock Manager (DCM) to
create the inverted clock.

So how does the circuit work in the first place®Tdtea is simple: there are two clocks CO and C1.
One is an inverted copy of the other. Both clodksusing theiteading edge$o send out two constant
signals, one HIGH and one LOW. The constants aneexcted to DO and D1, that are associated with
the two clocks. The DO is wired to CO, the D1 isaglito C1. On each leading edge the associated
signal is sent out. That's how the DDR registeloisg its job. (Read the Libraries Guide.)

The remaining issue is how to forward an SDR cliécke is planning to drive the Blackfin's PPI1?
Actually, there is no such thing as the SDR cld@2kly the data can be either DDR or SDR in the
relation to the clock. Clock forwarding is handibé same way in both cases.

In our application we faced an additional diffigulbecause the receiver expected the clock edfzdi to
in the middle of the bit “data eye”. It means ttieg clock and the data should bé 80t of phase,

while both were precisely in phase on-chip. We taoeshift the output phase of the forwarded clock to
give it just the right timing margin relative toetldata bits. (If you are planning to drive the Rfat

PPI then look at page 28 of BF561 Data Sheet.)yeahe clock can be done with the IODELAY?2
that is built into every Spartan-6 pin. The relevesde example can be found onscreen in Device
Primitive Instantiation— Spartan-6— 1/0 Components~ Input. For explanations please read about
IODELAY?2 in the Libraries Guide.

-- It is not clear from documentation what a tap de lay really is.
-- Use the scope to examine bit-to-clock timing.
IODELAY2_clock : IODELAY?2
GENERIC MAP (
COUNTER_WRAPAROUND=> "WRAPAROUND", -- STAY_AT_LIMI®r WRAPAROUND

DATA_RATE =>"SDR", -- SDR or DDR
DELAY_SRC =>"ODATAIN", -- 10, ODATAIN or IDATAIN
IDELAY_MODE =>"NORMAL", -- Unsupported (NORMAL or PC)
IDELAY_TYPE =>" FIl XED", -- FIXED, DEFAULT, VARIABLE_FROM_ZERO,...
IDELAY_VALUE =>0, -- Input Delay (0-255)
IDELAY2_VALUE => 0, -- Input Delay (0-255); only for PCI
ODELAY_VALUE =>XXX, -- Output delay (0-255). Use proper val ue
SERDES_MODE =>"NONE", -- NONE, MASTER or SLAVE
SIM_TAPDELAY_VALUE => 45) -- Used for simulation in ps

PORT MAP (-- all ports are 1-bit. FIXED mode does not use RST or clocks.
ODATAIN => CLK_RAW --in; Data input from OLOGIC or OSERDES.
IDATAIN =>LOW, -- in; Data input from IOB
T =>LOW, -- in; Tristate input. LOW=output, HIGH=in put.
CLK =>LOW, --in; Clock input from the fabric
DATAOUT => open, -- out; Delayed output to ISERDES/In put reg
DATAQOUT2 => open, -- out; Delayed output to general FPGA fabric
DOUT =>FORWARDED CLK, -- out; Delayed Data Output to output pin
TOUT => open, -- out; Delayed Tristate Out
IOCLKO => LOW, --in; Primary 1/O Clock input
IOCLK1 => LOW, --in; Secondary I/0O Clock input
RST =>LOW, -- in; Reset to zero or 1/2 of total per iod
CE =>LOW, -- in; Enable increment/decrement
INC =>LOW, --in; Increment / Decrement input
CAL =>LOW, -- in; Initiate calibration input
BUSY => open -- out; Busy after calibration CAL
); -- end of IODELAY2
OUT _PIN<= FORWARDED CLK; -- OUT_PIN is routed to the receiver

The IODELAY?2 is inserted between the ODDR2 from pievious page and the output pin. In our case
we wanted dixed output delay for the signal. The delay is thus HDX what automatically renders

most options irrelevant. The numberdaflay tapseeds to be set XXX after you look at the scope.
The not-so-funny feature of Spartan-6 is that thieer of the delay tap is not guaranteed by Xilamaq

therefore one has to use the scope to measuretthad delay. Try 50 picoseconds per tap for a good
start and use the scope to make sure. It will diglayclock signal by XXX*50 ps, if the delay tap56
picoseconds. But this value is only the first gu&ssi will need to use the scope.

The very fact of inserting theDELAY2 is adding about 2.5 ns to the signal path (chgekt&n-6 Data
Sheet for exact value). It means that a rough adagt of the clock to the bit “data eye” may be
achieved by just inserting theDELAY2 into the clock path without any further work, liiettODELAY2
blocks are noinserted into the bit paths.

21 Driving the data bits off-chip

We will now discuss how to drive the data using SR or DDR. Concerning the Single Data Rate,
there are two solutions. The first solution is diengust write

output_pin <= data_bit;

We recommend this solution because of its simplidibte that the IODELAY?2 is omitted in the data
path, and therefore one can easily create a Z®pok-to-bit offset by inserting the IODELAY?2 into
the clock path, while the data bits are routedatliyeo the output pins. Such an offset may be iregu
by the receiver (check the data sheet).

Another solution is to use tleDR2as explained in the previous section, but makéviieeDDR data
streams identical. The falling edge data will be s$ame as the rising edge data, what effectivebnsie
there will be no bit transition on the falling cloedge. And this is precisely what SDR means.

-- Double data rate register used for SDR transmiss ion.
ODDRZ2_bit : ODDR2
GENERIC MAP(

DDR_ALIGNMENT =>"NONE", -- Output alignment to "NONE", "C0", "C1"
INIT => "0/, -- Initial state of the Q output to ‘0'or'1
SRTYPE =>"ASYNC") -- Specifies "SYNC" or "ASYNC " set/reset
port map (

Q = out put _si gnal , -- connect to either output pad or to IODELAY?2

CO0 => CLK180, -- clockO input associated with DO

C1l => CLK, -- clockl input associated with D1

DO => same_dat a, -- data input associated with ClockO

D1 => same_dat a, -- data input associated with Clock1

CE => HIGH, -- clock enable input

R =>LOW, -- reset input

S =>LOW -- set input

);

Now we turn our attention to the DDR data streactuAlly, it is very simple. Replace the “same data”
in the previous example wittata_1 anddata_2 and you have created a DDR data stream, where
data_1 is coded on one edge, atwda_2 on the opposite edge of the clock.

The solutions outlined in this section are goodhout 100 MHz, that is 100 mbps per IO pin for SDR
and 200 mbps for DDR. The data rate can be incdealseut 5x using the SERDES blocks that are
built into every 10 pin. The reader is advisedtiedy Xilinx application notes concerning SERDES.

22 Conclusion and outlook

We walked the reader among several examples of Vpibgrams relevant to the BlackVME projects.
We are aware that the examples barely scratchutifigce. There are whole areas not covered with our
discussion, such as high-speed signal transmissienLVDS links, or digital signal processing. lasv
not possible to dive into these topics in an in@icidry tutorial whose scope and size has to stay
limited. Nevertheless, we hope that even the lithiteaterial presented in this tutorial will be ugetu
jump starting your BlackVME work.

In this concluding section we want to collect sasbservations and recommendations not mentioned
elsewhere. We suspect that the reader may feeloadnwhelmed and intimidated after the visit te th
whole new world of FPGA development. We want testtthat it is not as difficult as it might seem.
There are a few principles to keep in mind.

The FPGA work has to be much more rigidly strudutean it is customary with computer
programming. Let's face the reality. In principgemputer programs should be neatly written and well
documented. However, as most researchers probabbed, it is rarely the case. The computer code is
usually quickly cobbled together under the pressifitene. Any kind of crappy spaghetti code that is
doing the work is acceptable in research-grade ctengode. The kind of programming habits, that
work for computers, unfortunately will spell disasin FPGA programming.

The reason behind the difference between the canpand the FPGA programs is the way the FPGA
compilers work. As we repeatedly stressed in tharial, FPGA compilers do not translate the
programs into the FPGA code line-by-line. The cderpirather look fopatternsand apply a process
calledinferring. The programmer is advised to make the compiié'sis easy as possible by using
only the well-defined patterns that the compilealide to recognize. The spaghetti kind of
programming may confuse the compiler and leadfariiimg unintended circuitry. The FPGA netlist
will be produced by the compiler, but the outpohirsuch circuits may surprise the developer.

The FPGA program patterns can be put directly inéosource file. It is an acceptable practice ialsm
and medium projects. Larger projects should beddiinto a set cfomponentseach one
implemented in its own source file. The componatdrfaces can be conveniently collected in a
packagethat we named BlackVME_types in our examples. Careuse more than one package, if the
number of components grows beyond what is suit@lola single file.

Testing is tremendously important in FPGA projettse tests need to be conducted while the pragect |
developed. An alternative to incremental testing isst plan executed after the coding is finished.
any case, significant thought and effort shouldi&eoted to testing the responses of the FPGA t#cui
Testing can be conducted in software simulatiorth®fFPGA designs under the development
environment. All development systems such as I9ki@e tools for testing the netlist responses. The
acid test can be conducted only with the actualware through looking at the FPGA outputs. LEDs
are tremendously useful, as well as the logic astthat we provide with the BlackVME board. We
also provided the reconstruction DAC on our ADCdcdihe waveform reconstruction proved to be a
very useful tool for developing the signal procegsalgorithms.

As a final remark, SkuTek Instrumentation is offigrFPGA development services to our BlackVME
customers. Using our services may be the mosteftesttive method to implement your application in
the FPGA chip.

23 Important Notice

SkuTek Instrumentation reserves the right to makesctions, modifications, enhancements,
improvements, and other changes to its productsandces at any time and to discontinue any
product or service without notice. SkuTek doeswatrant or represent that any license, either esgpre
or implied, is granted under any SkuTek patenttrigbpyright, or other SkuTek intellectual property
right relating to any combination, machine, or @xin which SkuTek products or services are used.
Information published by SkuTek regarding thirdtgaroducts or services does not constitute a
license from SkuTek to use such products or sesvocea warranty or endorsement thereof. SkuTek
products are not authorized for use in safetyeaitapplications (such as life support) where ffai

of the SkuTek product would reasonably be expetti@@duse severe personal injury or death. Buyers
represent that they have all necessary expertigeisafety and regulatory ramifications of their
applications, and acknowledge and agree that treegaely responsible for all legal, regulatory and
safety-related requirements concerning their prtsdacapplications and any use of SkuTek products
in such safety-critical applications, notwithstarglany applications-related information or supploat
may be provided by SkuTek. Further, Buyers musy fndemnify SkuTek and its representatives
against any damages arising out of the use of kpiducts in such safety-critical applications.
SkuTek products are neither designed nor intendeedde in military/aerospace applications or
environments. SkuTek products are neither desigoeihtended for use in automotive applications or
environments.

Linux software programs distributed by SkuTek far dinux-based products are open-source
software; you can redistribute it and/or modifysbe@rograms under the terms of the GNU General
Public License as published by the Free Softwatméation; either version 2 of the License, or (at
your option) any later version. The software progsare distributed in the hope that they will be
useful, but WITHOUT ANY WARRANTY:; without even thenplied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSESee the GNU General Public
License for more details.

You should have received a copy of the GNU Gerfeudlic License along with our Linux programs;
if not, see the files named COPYING, or write te ffree Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA.

You can incorporate FPGA firmware source code exesngeveloped and distributed by SkuTek in
your projects either in their original form or mbeld to suit your needs. The examples remain our
intellectual property. All rights are reserved yu3ek to the extent permitted by law. Please rataimn
copyright statement in all copies that you makee &les are distributed in the hope that théy wi
be useful, but WITHOUT ANY WARRANTY:; without eveihé implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE

Source code examples developed by third partieairethe property of the respective owners.

